Javier Ochoa-RepÃ;raz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2207957/publications.pdf

Version: 2024-02-01

46 papers

3,356 citations

257450 24 h-index 254184 43 g-index

46 all docs 46 docs citations

46 times ranked

3933 citing authors

#	Article	IF	CITATIONS
1	Farnesol induces protection against murine CNS inflammatory demyelination and modifies gut microbiome. Clinical Immunology, 2022, 235, 108766.	3.2	13
2	Dysbiosis of the intestinal microbiome as a component of pathophysiology in the inborn errors of metabolism. Molecular Genetics and Metabolism, 2021, 132, 1-10.	1.1	11
3	Protection Conferred by Drinking Water Administration of a Nanoparticle-Based Vaccine against Salmonella Enteritidis in Hens. Vaccines, 2021, 9, 216.	4.4	2
4	Exploring the Gut-Brain Axis for the Control of CNS Inflammatory Demyelination: Immunomodulation by Bacteroides fragilis' Polysaccharide A. Frontiers in Immunology, 2021, 12, 662807.	4.8	19
5	Microbiome Methods in Experimental Autoimmune Encephalomyelitis. Current Protocols, 2021, 1, e314.	2.9	3
6	The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease?. Diseases (Basel, Switzerland), 2020, 8, 33.	2. 5	15
7	Editorial: The Role of the Gut Microbiota in Health and Inflammatory Diseases. Frontiers in Immunology, 2020, 11, 565305.	4.8	8
8	A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Frontiers in Immunology, 2020, 11, 510113.	4.8	10
9	Principles of Immunotherapy. Current Clinical Neurology, 2020, , 17-42.	0.2	1
10	Microbiota Manipulation as a Metagenomic Therapeutic Approach for Rare Inherited Metabolic Disorders. Clinical Pharmacology and Therapeutics, 2019, 106, 505-507.	4.7	5
11	The Gut Microbiota as a Therapeutic Approach for Obesity. , 2019, , 227-234.		2
12	Diet, Gut Microbiome and Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 302-326.	0.3	0
13	The Microbiome and Neurologic Disease: Past and Future of a 2-Way Interaction. Neurotherapeutics, 2018, 15, 1-4.	4.4	24
14	The Gut Microbiome and Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a029017.	6.2	86
15	The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Medical Sciences (Basel,) Tj ETQq1 1 (0.784314	rgBT/Overloc
16	Isoprenolâ€Induced Neuroprotection in Experimental Multiple Sclerosis. FASEB Journal, 2018, 32, 823.6.	0.5	0
17	A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes, 2017, 8, 561-573.	9.8	79
18	The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Translational Research, 2017, 179, 126-138.	5 . O	27

#	Article	IF	Citations
19	The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. Annals of Translational Medicine, 2017, 5, 145-145.	1.7	29
20	Induction of gut regulatory CD39 ⁺ T cells by teriflunomide protects against EAE. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e291.	6.0	24
21	The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?. Current Obesity Reports, 2016, 5, 51-64.	8.4	83
22	A commensal symbiotic factor derived from <i>Bacteroides fragilis</i> promotes human CD39 ⁺ Foxp3 ⁺ T cells and T _{reg} function. Gut Microbes, 2015, 6, 234-242.	9.8	188
23	Development of a Bacterial Nanoparticle Vaccine. Methods in Molecular Biology, 2015, 1225, 139-149.	0.9	1
24	A commensal bacterial product elicits and modulates migratory capacity of CD39 ⁺ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes, 2014, 5, 552-561.	9.8	104
25	Gut microbiome and the risk factors in central nervous system autoimmunity. FEBS Letters, 2014, 588, 4214-4222.	2.8	58
26	An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nature Communications, 2014, 5, 4432.	12.8	167
27	Gut Commensalism, Cytokines, and Central Nervous System Demyelination. Journal of Interferon and Cytokine Research, 2014, 34, 605-614.	1.2	17
28	Plasmacytoid Dendritic Cells Mediate Anti-inflammatory Responses to a Gut Commensal Molecule via Both Innate and Adaptive Mechanisms. Cell Host and Microbe, 2014, 15, 413-423.	11.0	239
29	Glatiramer acetate biases dendritic cells towards an anti-inflammatory phenotype by modulating OPN, IL-17, and RORγt responses and by increasing IL-10 production in experimental allergic encephalomyelitis. Journal of Neuroimmunology, 2013, 254, 117-124.	2.3	20
30	Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF- \hat{l}^2 . Journal of Neuroimmunology, 2012, 245, 39-47.	2.3	27
31	Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. Journal of Neuroimmunology, 2011, 232, 136-144.	2.3	44
32	Gut, bugs, and brain: Role of commensal bacteria in the control of central nervous system disease. Annals of Neurology, 2011, 69, 240-247.	5.3	137
33	Increased expression of B cell-associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2010, 219, 47-53.	2.3	49
34	Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes, 2010, 1, 103-108.	9.8	121
35	Poly(Anhydride) Nanoparticles Act as Active Th1 Adjuvants through Toll-Like Receptor Exploitation. Vaccine Journal, 2010, 17, 1356-1362.	3.1	107
36	Central Nervous System Demyelinating Disease Protection by the Human Commensal <i>Bacteroides fragilis</i> Depends on Polysaccharide A Expression. Journal of Immunology, 2010, 185, 4101-4108.	0.8	340

#	Article	IF	CITATIONS
37	A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunology, 2010, 3, 487-495.	6.0	450
38	IL-28 Supplants Requirement for Treg Cells in Protein $\ddot{l}f$ 1-Mediated Protection against Murine Experimental Autoimmune Encephalomyelitis (EAE). PLoS ONE, 2010, 5, e8720.	2.5	21
39	Role of Gut Commensal Microflora in the Development of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2009, 183, 6041-6050.	0.8	499
40	IL-13 Production by Regulatory T Cells Protects against Experimental Autoimmune Encephalomyelitis Independently of Autoantigen. Journal of Immunology, 2008, 181, 954-968.	0.8	73
41	Low-Dose Tolerance Is Mediated by the Microfold Cell Ligand, Reovirus Protein Ïf 1. Journal of Immunology, 2008, 180, 5187-5200.	0.8	41
42	Regulatory T Cell Vaccination without Autoantigen Protects against Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2007, 178, 1791-1799.	0.8	66
43	Attenuated <i>Coxiella burnetii </i> Phase II Causes a Febrile Response in Gamma Interferon Knockout and Toll-Like Receptor 2 Knockout Mice and Protects against Reinfection. Infection and Immunity, 2007, 75, 5845-5858.	2.2	22
44	Partially Assembled K99 Fimbriae Are Required for Protection. Infection and Immunity, 2005, 73, 7274-7280.	2.2	7
45	Protective ability of subcellular extracts from Salmonella Enteritidis and from a rough isogenic mutant against salmonellosis in mice. Vaccine, 2005, 23, 1491-1501.	3.8	16
46	Humoral immune response in hens naturally infected with Salmonella Enteritidis against outer membrane proteins and other surface structural antigens. Veterinary Research, 2004, 35, 291-298.	3.0	36