
Björn-Martin Sinnhuber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2207201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First profile measurements of tropospheric BrO. Geophysical Research Letters, 2000, 27, 2921-2924.	1.5	95
2	Chemical depletion of Arctic ozone in winter 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 18-1.	3.3	95
3	Total ozone during the unusual Antarctic winter of 2002. Geophysical Research Letters, 2003, 30, .	1.5	93
4	Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002. Geophysical Research Letters, 2003, 30, .	1.5	92
5	Lower stratospheric organic and inorganic bromine budget for the Arctic winter 1998/99. Geophysical Research Letters, 2000, 27, 3305-3308.	1.5	90
6	Arctic winter 2010/2011 at the brink of an ozone hole. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	88
7	Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms. Advances in Space Research, 2002, 29, 1661-1666.	1.2	80
8	Global observations of stratospheric bromine monoxide from SCIAMACHY. Geophysical Research Letters, 2005, 32, .	1.5	79
9	Large loss of total ozone during the Arctic winter of 1999/2000. Geophysical Research Letters, 2000, 27, 3473-3476.	1.5	73
10	Observed and simulated time evolution of HCl, ClONO ₂ , and HF total column abundances. Atmospheric Chemistry and Physics, 2012, 12, 3527-3556.	1.9	72
11	The Ozone Hole Breakup in September 2002 as Seen by SCIAMACHY on ENVISAT. Journals of the Atmospheric Sciences, 2005, 62, 721-734.	0.6	66
12	Comparison of measurements and model calculations of stratospheric bromine monoxide. Journal of Geophysical Research, 2002, 107, ACH 11-1.	3.3	62
13	Testing convective parameterizations with tropical measurements of HNO3 , CO, H2 O, and O3 : Implications for the water vapor budget. Journal of Geophysical Research, 2006, 111, .	3.3	61
14	Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 2671-2687.	1.9	52
15	A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine. Atmospheric Chemistry and Physics, 2016, 16, 9163-9187.	1.9	51
16	Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints. Atmospheric Chemistry and Physics, 2013, 13, 1203-1219.	1.9	50
17	Tropical sources and sinks of carbonyl sulfide observed from space. Geophysical Research Letters, 2015, 42, 10,082.	1.5	44
18	Comparison of measured and modeled stratospheric BrO: Implications for the total amount of stratospheric bromine. Geophysical Research Letters, 2000, 27, 3695-3698.	1.5	42

#	Article	IF	CITATIONS
19	Modeling the effect of denitrification on Arctic ozone depletion during winter 1999/2000. Journal of Geophysical Research, 2002, 107, SOL 65-1-SOL 65-18.	3.3	42
20	Odin/OSIRIS observations of stratospheric BrO: Retrieval methodology, climatology, and inferred Br _{<i>y</i>} . Journal of Geophysical Research, 2010, 115, .	3.3	36
21	SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World's Strongest Hotspot. Bulletin of the American Meteorological Society, 2021, 102, E871-E893.	1.7	36
22	Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter. Atmospheric Chemistry and Physics, 2017, 17, 12893-12910.	1.9	35
23	A longâ€ŧerm stratospheric ozone data set from assimilation of satellite observations: Highâ€ŀatitude ozone anomalies. Journal of Geophysical Research, 2010, 115, .	3.3	32
24	Attribution of stratospheric ozone trends to chemistry and transport: a modelling study. Atmospheric Chemistry and Physics, 2010, 10, 12073-12089.	1.9	31
25	Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends. Geophysical Research Letters, 2015, 42, 2449-2456.	1.5	30
26	Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions. Atmospheric Chemistry and Physics, 2015, 15, 11753-11772.	1.9	28
27	Polar boundary layer bromine explosion and ozone depletion events in the chemistry–climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm. Geoscientific Model Development, 2018, 11, 1115-1131.	1.3	28
28	Tracer-based determination of vortex descent in the 1999/2000 Arctic winter. Journal of Geophysical Research, 2002, 107, SOL 22-1.	3.3	27
29	Radiative and dynamical contributions to past and future Arctic stratospheric temperature trends. Atmospheric Chemistry and Physics, 2014, 14, 1679-1688.	1.9	26
30	Global carbonyl sulfide (OCS) measured by MIPAS/Envisat during 2002–2012. Atmospheric Chemistry and Physics, 2017, 17, 2631-2652.	1.9	25
31	Ground based millimeter-wave observations of Arctic Ozone depletion during winter and spring of 1996/97. Geophysical Research Letters, 1998, 25, 3327-3330.	1.5	24
32	MIPAS observations of volcanic sulfate aerosol and sulfur dioxide in the stratosphere. Atmospheric Chemistry and Physics, 2018, 18, 1217-1239.	1.9	24
33	Vortexwide denitrification of the Arctic polar stratosphere in winter 1999/2000 determined by remote observations. Journal of Geophysical Research, 2002, 107, SOL 48-1-SOL 48-11.	3.3	23
34	Airborne limb-imaging measurements of temperature, HNO ₃ , O ₃ , ClONO ₂ , H ₂ O and CFC-12 during the Arctic winter 2015/2016: characterization, inAsitu validation and comparison to Aura/MLS. Atmospheric Measurement	1.2	23
35	Techniques, 2018, 11, 4737-4756. Title is missing!. Journal of Atmospheric Chemistry, 2002, 43, 75-106.	1.4	22
36	Multistation intercomparison of column-averaged methane from NDACC and TCCON: impact of dynamical variability. Atmospheric Measurement Techniques, 2014, 7, 4081-4101.	1.2	22

BJĶRN-MARTIN SINNHUBER

#	Article	IF	CITATIONS
37	Observational evidence of rapid chlorine activation by mountain waves above northern Scandinavia. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	21
38	Brominated VSLS and their influence on ozone under aÂchanging climate. Atmospheric Chemistry and Physics, 2017, 17, 11313-11329.	1.9	20
39	Ground based millimeter-wave observations of Arctic chlorine activation during winter and spring 1996/97. Geophysical Research Letters, 1998, 25, 3331-3334.	1.5	19
40	The MIPAS HOCl climatology. Atmospheric Chemistry and Physics, 2012, 12, 1965-1977.	1.9	19
41	Evaluation of stratospheric chlorine chemistry for the Arctic spring 2005 using modelled and measured OClO column densities. Atmospheric Chemistry and Physics, 2011, 11, 689-703.	1.9	18
42	Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation. Atmospheric Chemistry and Physics, 2018, 18, 15623-15641.	1.9	18
43	Mixing and ageing in the polar lower stratosphere in winter 2015–2016. Atmospheric Chemistry and Physics, 2018, 18, 6057-6073.	1.9	17
44	Mesoscale fine structure of a tropopause fold over mountains. Atmospheric Chemistry and Physics, 2018, 18, 15643-15667.	1.9	15
45	Pointing and temperature retrieval from millimeter-submillimeter limb soundings. Journal of Geophysical Research, 2002, 107, ACH 10-1.	3.3	14
46	Retrieval of stratospheric NO3vertical profiles from SCIAMACHY lunar occultation measurement over the Antarctic. Journal of Geophysical Research, 2005, 110, .	3.3	14
47	Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011. Atmospheric Chemistry and Physics, 2015, 15, 8065-8076.	1.9	13
48	Interpretation of Mid-Stratospheric Arctic Ozone Measurements Using a Photochemical Box-Model. Journal of Atmospheric Chemistry, 1999, 34, 281-290.	1.4	10
49	Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations. Atmospheric Chemistry and Physics, 2019, 19, 8311-8338.	1.9	10
50	Chemical ozone depletion during Arctic winter 1997/98 derived from ground based millimeter-wave observations. Geophysical Research Letters, 1999, 26, 599-602.	1.5	9
51	Chemistry–Climate Interactions of Stratospheric and Mesospheric Ozone in EMAC Long-Term Simulations with Different Boundary Conditions for CO ₂ , CH ₄ , N ₂ O, and ODS. Atmosphere - Ocean, 2015, 53, 140-152.	0.6	9
52	Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016. Atmospheric Chemistry and Physics, 2019, 19, 13681-13699.	1.9	6
53	Pollution trace gases C ₂ H ₆ , C ₂ H ₂ , HCOOH, and PAN in the North Atlantic UTLS: observations and simulations. Atmospheric Chemistry and Physics, 2021, 21,	1.9	6
54	6213-6232. Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals. Atmospheric Measurement Techniques, 2016, 9, 5499-5508.	1.2	4

#	Article	IF	CITATIONS
55	Aircraft measurements and model simulations of stratospheric ozone and N2O: implications for chemistry and transport processes in the models. Journal of Atmospheric Chemistry, 2010, 66, 41-64.	1.4	3
56	Diurnal variations of BrONO ₂ observed by MIPAS-B at midlatitudes and in the Arctic. Atmospheric Chemistry and Physics, 2017, 17, 14631-14643.	1.9	3
57	Redistribution of total reactive nitrogen in the lowermost Arctic stratosphere during the cold winter 2015/2016. Atmospheric Chemistry and Physics, 2022, 22, 3631-3654.	1.9	3
58	Biomass burning pollution in the South Atlantic upper troposphere: GLORIA trace gas observations and evaluation of the CAMS model. Atmospheric Chemistry and Physics, 2022, 22, 3675-3691.	1.9	3
59	Frank S. Marzano and Guido Visconti: Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques. Journal of Atmospheric Chemistry, 2004, 48, 105-106.	1.4	1
60	Data Assimilation and Model Calculations to Study Chemistry Climate Interactions in the Stratosphere. Springer Atmospheric Sciences, 2013, , 149-170.	0.4	1
61	Results of the preparatory study "PREMIER Analysis of Campaign Data― Annals of Geophysics, 2014, , .	0.5	1
62	The Michelson Interferometer for Passive Atmospheric Sounding global climatology of BrONO ₂ 2002–2012: a test for stratospheric bromine chemistry. Atmospheric Chemistry and Physics, 2021, 21, 18433-18464.	1.9	1
63	Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models. Atmospheric Chemistry and Physics, 2022, 22, 2843-2870.	1.9	0