

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206750/publications.pdf Version: 2024-02-01

CANC ZOU

#	Article	IF	CITATIONS
1	Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virologica Sinica, 2021, 36, 61-74.	1.2	11
2	Ebola virus replication is regulated by the phosphorylation of viral protein VP35. Biochemical and Biophysical Research Communications, 2020, 521, 687-692.	1.0	9
3	Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein and Cell, 2020, 11, 723-739.	4.8	129
4	Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro. Virologica Sinica, 2020, 35, 776-784.	1.2	24
5	Development of Novel Anti-influenza Thiazolides with Relatively Broad-Spectrum Antiviral Potentials. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	16
6	A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discovery, 2020, 6, 5.	3.1	20
7	Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.	1.9	15
8	Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discovery, 2019, 5, 4.	3.1	26
9	Discovery of Ziresovir as a Potent, Selective, and Orally Bioavailable Respiratory Syncytial Virus Fusion Protein Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 6003-6014.	2.9	39
10	Spectrum of Enterovirus Serotypes Causing Uncomplicated Hand, Foot, and Mouth Disease and Enteroviral Diagnostic Yield of Different Clinical Samples. Clinical Infectious Diseases, 2018, 67, 1729-1735.	2.9	31
11	Negligible contribution of M2634V substitution to ZIKV pathogenesis in AG6 mice revealed by a bacterial promoter activity reduced infectious clone. Scientific Reports, 2018, 8, 10491.	1.6	24
12	Characterization of three small molecule inhibitors of enterovirus 71 identified from screening of a library of natural products. Antiviral Research, 2017, 143, 85-96.	1.9	28
13	Molecular epidemiology of human enterovirus 71 at the origin of an epidemic of fatal hand, foot and mouth disease cases in Cambodia. Emerging Microbes and Infections, 2016, 5, 1-9.	3.0	54
14	Targeting human respiratory syncytial virus transcription anti-termination factor M2-1 to inhibit in vivo viral replication. Scientific Reports, 2016, 6, 25806.	1.6	31
15	Cyclopiazonic acid, an inhibitor of calcium-dependent ATPases with antiviral activity against human respiratory syncytial virus. Antiviral Research, 2016, 132, 38-45.	1.9	20
16	<i>In Vitro</i> Assessment of Combinations of Enterovirus Inhibitors against Enterovirus 71. Antimicrobial Agents and Chemotherapy, 2016, 60, 5357-5367.	1.4	36
17	Identification of Positively Charged Residues in Enterovirus 71 Capsid Protein VP1 Essential for Production of Infectious Particles. Journal of Virology, 2016, 90, 741-752.	1.5	33
18	Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Research, 2016, 125, 1-7.	1.9	58

Gang Zou

#	Article	IF	CITATIONS
19	Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: epidemiology, clinical feature and diagnosis. Virology Journal, 2015, 12, 83.	1.4	43
20	Discovery of Itraconazole with Broad-Spectrum <i>In Vitro</i> Antienterovirus Activity That Targets Nonstructural Protein 3A. Antimicrobial Agents and Chemotherapy, 2015, 59, 2654-2665.	1.4	63
21	The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection—suramin inhibits EV71 infection <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2014, 3, 1-9.	3.0	47
22	Complete Genome Sequence of a Human Enterovirus 71 Strain Isolated from a Fatal Case in Shanghai, China, in 2012. Genome Announcements, 2014, 2, .	0.8	6
23	Highly Conserved Residues in the Helical Domain of Dengue Virus Type 1 Precursor Membrane Protein Are Involved in Assembly, Precursor Membrane (prM) Protein Cleavage, and Entry. Journal of Biological Chemistry, 2014, 289, 33149-33160.	1.6	40
24	Resistance analysis of an antibody that selectively inhibits dengue virus serotype-1. Antiviral Research, 2012, 95, 216-223.	1.9	16
25	The Structural Basis for Serotype-Specific Neutralization of Dengue Virus by a Human Antibody. Science Translational Medicine, 2012, 4, 139ra83.	5.8	200
26	The C-terminal helical domain of dengue virus precursor membrane protein is involved in virus assembly and entry. Virology, 2011, 410, 170-180.	1.1	36
27	Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Research, 2011, 91, 11-19.	1.9	119
28	Functional Analysis of Two Cavities in Flavivirus NS5 Polymerase. Journal of Biological Chemistry, 2011, 286, 14362-14372.	1.6	114
29	A Single Amino Acid in Nonstructural Protein NS4B Confers Virulence to Dengue Virus in AG129 Mice through Enhancement of Viral RNA Synthesis. Journal of Virology, 2011, 85, 7775-7787.	1.5	73
30	The Helical Domains of the Stem Region of Dengue Virus Envelope Protein Are Involved in both Virus Assembly and Entry. Journal of Virology, 2011, 85, 5159-5171.	1.5	48
31	Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase. Journal of Biological Chemistry, 2011, 286, 6233-6240.	1.6	147
32	Identification of palmatine as an inhibitor of West Nile virus. Archives of Virology, 2010, 155, 1325-1329.	0.9	68
33	Biochemical and genetic characterization of dengue virus methyltransferase. Virology, 2010, 405, 568-578.	1.1	91
34	Structural and Functional Analyses of a Conserved Hydrophobic Pocket of Flavivirus Methyltransferase. Journal of Biological Chemistry, 2010, 285, 32586-32595.	1.6	52
35	Characterization of Dengue Virus Resistance to Brequinar in Cell Culture. Antimicrobial Agents and Chemotherapy, 2010, 54, 3686-3695.	1.4	89
36	Cyclosporine Inhibits Flavivirus Replication through Blocking the Interaction between Host Cyclophilins and Viral NS5 Protein. Antimicrobial Agents and Chemotherapy, 2009, 53, 3226-3235.	1.4	116

Gang Zou

#	Article	IF	CITATIONS
37	Exclusion of West Nile Virus Superinfection through RNA Replication. Journal of Virology, 2009, 83, 11765-11776.	1.5	84
38	A single-amino acid substitution in West Nile virus 2K peptide between NS4A and NS4B confers resistance to lycorine, a flavivirus inhibitor. Virology, 2009, 384, 242-252.	1.1	113
39	Identification and characterization of inhibitors of West Nile virus. Antiviral Research, 2009, 83, 71-79.	1.9	33
40	Biodegradation of Methyl tert-Butyl Ether by Enriched Bacterial Culture. Current Microbiology, 2009, 59, 30-34.	1.0	14
41	An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20435-20439.	3.3	323