Miguel A Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are there profiles of cheeses with a high GABA and safe histamine content?. Food Control, 2022, 132, 108491.	2.8	2
2	Investigating the biotechnological potential of lactic acid bacteria strains isolated from different Algerian dairy and farm sources. Archives of Microbiology, 2022, 204, 220.	1.0	2
3	Conjugative DNA Transfer From E. coli to Transformation-Resistant Lactobacilli. Frontiers in Microbiology, 2021, 12, 606629.	1.5	8
4	GABA-Producing Lactococcus lactis Strains Isolated from Camel's Milk as Starters for the Production of GABA-Enriched Cheese. Foods, 2021, 10, 633.	1.9	17
5	The biogenic amine tryptamine, unlike β-phenylethylamine, shows in vitro cytotoxicity at concentrations that have been found in foods. Food Chemistry, 2020, 331, 127303.	4.2	42
6	Aminas biógenas en alimentos: métodos moleculares para la detección e identificación de bacterias productoras. Arbor, 2020, 196, 545.	0.1	0
7	Histamine production in Lactobacillus vaginalis improves cell survival at low pH by counteracting the acidification of the cytosol. International Journal of Food Microbiology, 2020, 321, 108548.	2.1	17
8	Isolation and Characterization of Enterococcus faecalis-Infecting Bacteriophages From Different Cheese Types. Frontiers in Microbiology, 2020, 11, 592172.	1.5	11
9	Identification of technological/metabolic/environmental profiles of cheeses with high GABA contents. LWT - Food Science and Technology, 2020, 130, 109603.	2.5	11
10	Polyphasic Characterisation of Non-Starter Lactic Acid Bacteria from Algerian Raw Camel's Milk and Their Technological Aptitudes. Food Technology and Biotechnology, 2020, 58, 260-272.	0.9	5
11	Magnetic immunochromatographic test for histamine detection in wine. Analytical and Bioanalytical Chemistry, 2019, 411, 6615-6624.	1.9	41
12	Construction and characterization of a double mutant of Enterococcus faecalis that does not produce biogenic amines. Scientific Reports, 2019, 9, 16881.	1.6	2
13	The biogenic amines putrescine and cadaverine show in vitro cytotoxicity at concentrations that can be found in foods. Scientific Reports, 2019, 9, 120.	1.6	126
14	Enterococcus faecalis Bacteriophage 156 Is an Effective Biotechnological Tool for Reducing the Presence of Tyramine and Putrescine in an Experimental Cheese Model. Frontiers in Microbiology, 2019, 10, 566.	1.5	19
15	Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Frontiers in Microbiology, 2019, 9, .	1.5	21
16	Lactobacillus rossiae strain isolated from sourdough produces putrescine from arginine. Scientific Reports, 2018, 8, 3989.	1.6	27
17	An altered gene expression profile in tyramine-exposed intestinal cell cultures supports the genotoxicity of this biogenic amine at dietary concentrations. Scientific Reports, 2018, 8, 17038.	1.6	19
18	<i>Lactobacillus parabuchneri</i> produces histamine in refrigerated cheese at a temperatureâ€dependent rate. International Journal of Food Science and Technology, 2018, 53, 2342-2348.	1.3	19

#	Article	IF	CITATIONS
19	Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods?. Food Chemistry, 2018, 269, 321-326.	4.2	40
20	A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chemistry, 2017, 217, 117-124.	4.2	61
21	The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chemistry, 2017, 218, 249-255.	4.2	115
22	The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis. Frontiers in Microbiology, 2017, 8, 2107.	1.5	16
23	Q69 (an E. faecalis-Infecting Bacteriophage) As a Biocontrol Agent for Reducing Tyramine in Dairy Products. Frontiers in Microbiology, 2016, 7, 445.	1.5	28
24	Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products. Frontiers in Microbiology, 2016, 7, 591.	1.5	39
25	Putrescine production by Lactococcus lactis subsp. cremoris CECT 8666 is reduced by NaCl via a decrease in bacterial growth and the repression of the genes involved in putrescine production. International Journal of Food Microbiology, 2016, 232, 1-6.	2.1	16
26	Transcriptome profiling of TDC cluster deletion mutant of Enterococcus faecalis V583. Genomics Data, 2016, 9, 67-69.	1.3	7
27	Data on recovery of 21 amino acids, 9 biogenic amines and ammonium ions after spiking four different beers with five concentrations of these analytes. Data in Brief, 2016, 9, 398-400.	0.5	2
28	Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol. International Journal of Food Microbiology, 2016, 236, 83-89.	2.1	15
29	Nucleotide sequence alignment of hdcA from Gram-positive bacteria. Data in Brief, 2016, 6, 674-679.	0.5	5
30	Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiology, 2016, 59, 85-91.	2.1	35
31	Screening sourdough samples for gliadin-degrading activity revealed <i>Lactobacillus casei</i> strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Canadian Journal of Microbiology, 2016, 62, 422-430.	0.8	4
32	Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chemistry, 2016, 197, 658-663.	4.2	154
33	A PCR-DGGE method for the identification of histamine-producing bacteria in cheese. Food Control, 2016, 63, 216-223.	2.8	55
34	Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine. Genomics Data, 2016, 7, 112-114.	1.3	4
35	Mastitis Modifies the Biogenic Amines Profile in Human Milk, with Significant Changes in the Presence of Histamine, Putrescine and Spermine. PLoS ONE, 2016, 11, e0162426.	1.1	14
36	Transcriptomic profile of aguR deletion mutant of Lactococcus lactis subsp. cremoris CECT 8666. Genomics Data, 2015, 6, 228-230.	1.3	3

#	Article	IF	CITATIONS
37	Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microbial Cell Factories, 2015, 14, 208.	1.9	19
38	AguR, a Transmembrane Transcription Activator of the Putrescine Biosynthesis Operon in Lactococcus lactis, Acts in Response to the Agmatine Concentration. Applied and Environmental Microbiology, 2015, 81, 6145-6157.	1.4	20
39	An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface. Applied and Environmental Microbiology, 2015, 81, 5784-5793.	1.4	24
40	Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Applied Microbiology and Biotechnology, 2015, 99, 3547-3558.	1.7	67
41	Genetic and functional analysis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. European Food Research and Technology, 2015, 241, 377-383.	1.6	46
42	IS <i>256</i> abolishes gelatinase activity and biofilm formation in a mutant of the nosocomial pathogen <i>Enterococcus faecalis</i> V583. Canadian Journal of Microbiology, 2015, 61, 517-519.	0.8	20
43	Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese. International Journal of Food Microbiology, 2015, 215, 117-123.	2.1	38
44	Lactose-mediated carbon catabolite repression of putrescine production in dairy Lactococcus lactis is strain dependent. Food Microbiology, 2015, 48, 163-170.	2.1	26
45	Draft Genome Sequence of the Putrescine-Producing Strain Lactococcus lactis subsp. <i>lactis</i> lAA59. Genome Announcements, 2015, 3, .	0.8	0
46	Putrescine production via the agmatine deiminase pathway increases the growth of Lactococcus lactis and causes the alkalinization of the culture medium. Applied Microbiology and Biotechnology, 2015, 99, 897-905.	1.7	40
47	Solubilization of gliadins for use as a source of nitrogen in the selection of bacteria with gliadinase activity. Food Chemistry, 2015, 168, 439-444.	4.2	5
48	Genome Sequence Analysis of the Biogenic Amine-Producing Strain Lactococcus lactis subsp. <i>cremoris</i> CECT 8666 (Formerly GE2-14). Genome Announcements, 2014, 2, .	0.8	9
49	An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis. Microbial Cell Factories, 2014, 13, 169.	1.9	22
50	Genome Sequence Analysis of the Biogenic Amine-Degrading Strain Lactobacillus casei 5b. Genome Announcements, 2014, 2, .	0.8	8
51	Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Applied Microbiology and Biotechnology, 2014, 98, 6689-6700.	1.7	21
52	The problem of biogenic amines in fermented foods andÂthe use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science and Technology, 2014, 39, 146-155.	7.8	273
53	Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus. International Journal of Food Microbiology, 2014, 175, 14-19.	2.1	63
54	A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chemistry, 2013, 139, 1029-1035.	4.2	126

#	Article	IF	CITATIONS
55	Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiology, 2013, 13, 288.	1.3	58
56	The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. International Journal of Food Microbiology, 2013, 165, 43-50.	2.1	30
57	Draft Genome Sequence of the Tyramine Producer Enterococcus durans Strain IPLA 655. Genome Announcements, 2013, 1, .	0.8	11
58	An Extracellular Serine/Threonine-Rich Protein from Lactobacillus plantarum NCIMB 8826 Is a Novel Aggregation-Promoting Factor with Affinity to Mucin. Applied and Environmental Microbiology, 2013, 79, 6059-6066.	1.4	26
59	Draft Genome Sequence of Lactobacillus plantarum Strain IPLA 88. Genome Announcements, 2013, 1, .	0.8	5
60	Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei. International Microbiology, 2013, 16, 93-101.	1.1	8
61	Factors Influencing Biogenic Amines Accumulation in Dairy Products. Frontiers in Microbiology, 2012, 3, 180.	1.5	193
62	Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Frontiers in Microbiology, 2012, 3, 122.	1.5	135
63	Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control, 2012, 27, 307-313.	2.8	58
64	Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci?. Food Microbiology, 2012, 30, 132-138.	2.1	167
65	Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. International Journal of Food Microbiology, 2012, 157, 297-304.	2.1	76
66	The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus duransis transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiology, 2012, 12, 23.	1.3	17
67	Isolation of an exopolysaccharide-producing Streptococcus thermophilus from Algerian raw cow milk. European Food Research and Technology, 2012, 234, 119-125.	1.6	14
68	Sequencing and Transcriptional Analysis of the Biosynthesis Gene Cluster of Putrescine-Producing Lactococcus lactis. Applied and Environmental Microbiology, 2011, 77, 6409-6418.	1.4	74
69	Biogenic Amines in Dairy Products. Critical Reviews in Food Science and Nutrition, 2011, 51, 691-703.	5.4	303
70	qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science and Technology, 2011, 22, 367-376.	7.8	46
71	Survival of biogenic amineâ€producing dairy LAB strains at pasteurisation conditions. International Journal of Food Science and Technology, 2011, 46, 516-521.	1.3	46
72	Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiology, 2011, 28, 434-439.	2.1	55

#	Article	IF	CITATIONS
73	Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 2011, 28, 554-561.	2.1	50
74	Integrative Expression System for Delivery of Antibody Fragments by Lactobacilli. Applied and Environmental Microbiology, 2011, 77, 2174-2179.	1.4	45
75	Role of Tyramine Synthesis by Food-Borne <i>Enterococcus durans</i> in Adaptation to the Gastrointestinal Tract Environment. Applied and Environmental Microbiology, 2011, 77, 699-702.	1.4	50
76	Characterization of the tyramine-producing pathway in Sporolactobacillus sp. P3J. Microbiology (United Kingdom), 2011, 157, 1841-1849.	0.7	18
77	Quantitative detection and identification of tyramine-producing enterococci and lactobacilli in cheese by multiplex qPCR. Food Microbiology, 2010, 27, 933-939.	2.1	59
78	Extraction of RNA from fermented milk products for in situ gene expression analysis. Analytical Biochemistry, 2010, 400, 307-309.	1.1	8
79	Sequencing and Transcriptional Analysis of the <i>Streptococcus thermophilus</i> Histamine Biosynthesis Gene Cluster: Factors That Affect Differential <i>hdcA</i> Expression. Applied and Environmental Microbiology, 2010, 76, 6231-6238.	1.4	82
80	Toxicological Effects of Dietary Biogenic Amines. Current Nutrition and Food Science, 2010, 6, 145-156.	0.3	406
81	qPCR for quantitative detection of tyramine-producing bacteria in dairy products. Food Research International, 2010, 43, 289-295.	2.9	62
82	A novel real-time polymerase chain reaction-based method for the detection and quantification of lactose-fermenting Enterobacteriaceae in the dairy and other food industries. Journal of Dairy Science, 2010, 93, 860-867.	1.4	21
83	Tyramine biosynthesis in <i>Enterococcus durans</i> is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microbial Biotechnology, 2009, 2, 625-633.	2.0	48
84	Effect of post-ripening processing on the histamine and histamine-producing bacteria contents of different cheeses. International Dairy Journal, 2009, 19, 759-762.	1.5	50
85	Isolation and identification of tyramine-producing enterococci from human fecal samples. Canadian Journal of Microbiology, 2009, 55, 215-218.	0.8	21
86	Fast real-time polymerase chain reaction for quantitative detection of Lactobacillus delbrueckii bacteriophages in milk. Food Microbiology, 2008, 25, 978-982.	2.1	18
87	PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products. International Journal of Food Microbiology, 2008, 124, 147-153.	2.1	27
88	Real time quantitative PCR detection of histamine-producing lactic acid bacteria in cheese: Relation with histamine content. Food Research International, 2008, 41, 1015-1019.	2.9	65
89	Multiplex Fast Real-Time PCR for Quantitative Detection and Identification of <i>cos</i> - and <i>pac</i> -Type <i>Streptococcus thermophilus</i> Bacteriophages. Applied and Environmental Microbiology, 2008, 74, 4779-4781.	1.4	34
90	Neisseria gonorrhoeaeMeningitis in Pregnant Adolescent. Emerging Infectious Diseases, 2008, 14, 1672-1674.	2.0	11

#	Article	IF	CITATIONS
91	HPLC quantification of biogenic amines in cheeses: correlation with PCR-detection of tyramine-producing microorganisms. Journal of Dairy Research, 2007, 74, 276-282.	0.7	116
92	Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes. International Journal of Antimicrobial Agents, 2007, 30, 341-344.	1.1	18
93	Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiology, 2007, 24, 75-81.	2.1	72
94	Factors affecting tyramine production in Enterococcus durans IPLA 655. Applied Microbiology and Biotechnology, 2007, 73, 1400-1406.	1.7	85
95	Real-Time Polymerase Chain Reaction for Quantitative Detection of Histamine-Producing Bacteria: Use in Cheese Production. Journal of Dairy Science, 2006, 89, 3763-3769.	1.4	83
96	PCR Identification of Lysogenic Lactococcus lactis Strains. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2006, 1, 121-124.	0.5	11
97	Early PCR detection of tyramine-producing bacteria during cheese production. Journal of Dairy Research, 2006, 73, 318-321.	0.7	20
98	Relationships between toxin gene content and genetic background in nasal carried isolates ofStaphylococcus aureusfrom Asturias, Spain. FEMS Microbiology Letters, 2005, 243, 447-454.	0.7	31
99	Cytotoxin and Pyrogenic Toxin Superantigen Gene Profiles of Staphylococcus aureus Associated with Subclinical Mastitis in Dairy Cows and Relationships with Macrorestriction Genomic Profiles. Journal of Clinical Microbiology, 2005, 43, 1278-1284.	1.8	75
100	Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology (United Kingdom), 2005, 151, 1219-1228.	0.7	66
101	Detection and Characterization of Streptococcus thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence. Applied and Environmental Microbiology, 2005, 71, 6096-6103.	1.4	63
102	Sequencing of the Tyrosine Decarboxylase Cluster of Lactococcus lactis IPLA 655 and the Development of a PCR Method for Detecting Tyrosine Decarboxylating Lactic Acid Bacteria. Journal of Food Protection, 2004, 67, 2521-2529.	0.8	75
103	Nisin-controlled expression of Norwalk virus VP60 protein in Lactobacillus casei. FEMS Microbiology Letters, 2004, 237, 385-391.	0.7	19
104	Nisin-controlled expression of Norwalk virus VP60 protein in. FEMS Microbiology Letters, 2004, 237, 385-391.	0.7	16
105	Collinone, a New Recombinant Angular Polyketide Antibiotic Made by an Engineered Streptomyces Strain Journal of Antibiotics, 2001, 54, 239-249.	1.0	45
106	Generation of Food-Grade Recombinant Lactic Acid Bacterium Strains by Site-Specific Recombination. Applied and Environmental Microbiology, 2000, 66, 2599-2604.	1.4	69
107	Stable expression of theLactobacillus caseibacteriophage A2 repressor blocks phage propagation during milk fermentation. Journal of Applied Microbiology, 1999, 86, 812-816.	1.4	23
108	The Site-Specific Recombination System of theLactobacillusSpecies Bacteriophage A2 Integrates in Gram-Positive and Gram-Negative Bacteria. Virology, 1998, 250, 185-193.	1.1	59

#	Article	IF	CITATIONS
109	Identification of the Repressor-Encoding Gene of the <i>Lactobacillus</i> Bacteriophage A2. Journal of Bacteriology, 1998, 180, 3474-3476.	1.0	47
110	Engineered Biosynthesis of Novel Polyketides:Â Regiospecific Methylation of an Unnatural Substrate by the tcmOO-Methyltransferaseâ€. Biochemistry, 1996, 35, 6527-6532.	1.2	28
111	Comparative analysis of expression of the Sal I restriction-modification system in Escherichia coli and Streptomyces. Molecular Genetics and Genomics, 1996, 253, 74-80.	2.4	6
112	Engineered Biosynthesis of Novel Polyketides: Properties of the whiE Aromatase/Cyclase. Nature Biotechnology, 1996, 14, 335-338.	9.4	40
113	Expression of the Sall restriction-modification system of streptomyces albus G in escherichia coli. Gene, 1995, 157, 231-232.	1.0	3
114	Characterization of yeast DNA sequences capable of directing transcription inStreptomycesandEscherichia coli. FEMS Microbiology Letters, 1994, 115, 119-124.	0.7	0
115	Complex transcription of an operon encoding the Sail restriction-modification system of Streptomyces albus G. Molecular Microbiology, 1993, 8, 243-252.	1.2	20
116	Isolation and genetic structure of IS112, an insertion sequence responsible for the inactivation of the Sall restriction-modification system of Streptomyces albus G. Molecular Genetics and Genomics, 1991, 225, 142-147.	2.4	15

8