Andrey E Miroshnichenko

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2206688/andrey-e-miroshnichenko-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 287
 17,183
 62
 125

 papers
 citations
 h-index
 g-index

 387
 20,641
 5.8
 7.18

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
287	Enhanced strong coupling of WSe2 monolayer by Bound State in the continuum. <i>Journal of Physics: Conference Series</i> , 2022 , 2172, 012009	0.3	
286	Enhanced four-wave mixing from multi-resonant silicon dimer-hole membrane metasurfaces. <i>New Journal of Physics</i> , 2022 , 24, 035002	2.9	1
285	Photonic slide rule with metasurfaces <i>Light: Science and Applications</i> , 2022 , 11, 77	16.7	O
284	Multifaceted anapole: from physics to applications [Invited]. Optical Materials Express, 2022, 12, 1817	2.6	3
283	Topological Supercavity Resonances in the Finite System Advanced Science, 2022, e2200257	13.6	4
282	Generalized hybrid anapole modes in all-dielectric ellipsoid particles [Invited]. <i>Optical Materials Express</i> , 2021 , 11, 23	2.6	9
281	Enhanced Strong Coupling of TMDC Monolayers by Bound State in the Continuum. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100240	8.3	9
280	Nonradiating sources for efficient wireless power transfer. <i>Nanophotonics</i> , 2021 , 10, 4399-4408	6.3	4
279	Highly Sensitive Resonant Dielectric Metagrating Sensors 2021 ,		1
278	Two tractable models of dynamic light scattering and their application to Fano resonances. <i>Nanophotonics</i> , 2021 ,	6.3	1
277	Infrared all-dielectric Kerker metasurfaces. <i>Optics Express</i> , 2021 , 29, 10518-10526	3.3	8
276	Broadband control on scattering events with interferometric coherent waves. <i>New Journal of Physics</i> , 2021 , 23, 063014	2.9	1
275	Infrared upconversion imaging in nonlinear metasurfaces. Advanced Photonics, 2021, 3,	8.1	11
274	Broadband Achromatic Metalens in Mid-Wavelength Infrared. <i>Laser and Photonics Reviews</i> , 2021 , 15, 2100020	8.3	22
273	Synthetic Plasmonic Nanocircuits and the Evolution of Their Correlated Spatial Arrangement and Resonance Spectrum. <i>ACS Photonics</i> , 2021 , 8, 166-174	6.3	1
272	Boosting Strong Coupling in a Hybrid WSe2 Monolayer Anapole Plasmon System. ACS Photonics, 2021 , 8, 489-496	6.3	10
271	Highly Efficient Near-Infrared Detector Based on Optically Resonant Dielectric Nanodisks. <i>Nanomaterials</i> , 2021 , 11,	5.4	4

(2020-2021)

270	Pushing the limit of high-Q mode of a single dielectric nanocavity. <i>Advanced Photonics</i> , 2021 , 3,	8.1	26
269	Edge Detection with Mie-Resonant Dielectric Metasurfaces. ACS Photonics, 2021, 8, 864-871	6.3	11
268	Geometry symmetry-free and higher-order optical bound states in the continuum. <i>Nature Communications</i> , 2021 , 12, 4390	17.4	4
267	Anapole Meta-Atoms: Nonradiating Electric and Magnetic Sources. <i>Physical Review Letters</i> , 2021 , 127, 096804	7.4	10
266	Resonant Dielectric Metagratings for Response Intensified Optical Sensing. <i>Advanced Functional Materials</i> , 2021 , 2103143	15.6	3
265	Planar narrow bandpass filter based on Si resonant metasurface. <i>Journal of Applied Physics</i> , 2021 , 130, 053105	2.5	4
264	Sound trapping in an open resonator. <i>Nature Communications</i> , 2021 , 12, 4819	17.4	9
263	Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. <i>Nature Communications</i> , 2021 , 12, 5597	17.4	10
262	Structured light excitation of toroidal dipoles in dielectric nanodisks. <i>Physical Review B</i> , 2021 , 104,	3.3	4
261	Polarization-independent perfect absorber enabled by quasibound states in the continuum. <i>Physical Review B</i> , 2021 , 104,	3.3	7
2 60	Deep Learning Enabled Nanophotonics 2020 ,		5
259	Strong Exciton P lasmon Coupling in a WS2 Monolayer on Au Film Hybrid Structures Mediated by Liquid Ga Nanoparticles. <i>Laser and Photonics Reviews</i> , 2020 , 14, 1900420	8.3	18
258	Trends in Quantum Nanophotonics. Advanced Quantum Technologies, 2020, 3, 1900126	4.3	14
257	Constraint polynomial approach: an alternative to the functional Bethe Ansatz method?. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	2
256	Enhanced lightshatter interactions in dielectric nanostructures via machine-learning approach. <i>Advanced Photonics</i> , 2020 , 2, 1	8.1	32
255	Photon-pair generation via bound states in the continuum in nonlinear metasurfaces 2020,		1
254	Giant electric and magnetic Purcell factor in dielectric oligomers. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2020 , 37, 2738	1.7	8
253	Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators. <i>Nanophotonics</i> , 2020 , 9, 3953-3963	6.3	21

252	Nonlinear Metamaterials. Advances in Dynamics, Patterns, Cognition, 2020, 55-79	0.7	1
251	Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennas. <i>ACS Nano</i> , 2020 , 14, 1379-1389	16.7	26
250	Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices. <i>Nature Photonics</i> , 2020 , 14, 76-81	33.9	21
249	Modifying Mie Resonances and Carrier Dynamics of Silicon Nanoparticles by Dense Electron-Hole Plasmas. <i>Physical Review Applied</i> , 2020 , 13,	4.3	10
248	Seeing the Unseen: Experimental Observation of Magnetic Anapole State Inside a High-Index Dielectric Particle. <i>Annalen Der Physik</i> , 2020 , 532, 2000293	2.6	8
247	Toroidal dipolar excitations in all-dielectric nanostructures. <i>Journal of Physics: Conference Series</i> , 2020 , 1461, 012191	0.3	1
246	Optical beaming of electrical discharges. <i>Nature Communications</i> , 2020 , 11, 5306	17.4	3
245	Mid-infrared polarization-controlled broadband achromatic metadevice. <i>Science Advances</i> , 2020 , 6,	14.3	32
244	Nanoscale Optical Display and Sensing Based on the Modification of Fano Lineshape. <i>Advanced Optical Materials</i> , 2020 , 8, 2000489	8.1	8
243	High Fluence Chromium and Tungsten Bowtie Nano-antennas. Scientific Reports, 2019, 9, 13023	4.9	3
242	Deep learning beats the optical diffraction limit. <i>Nature Nanotechnology</i> , 2019 , 14, 198-199	28.7	2
241	Resonant harmonic generation in AlGaAs nanoantennas probed by cylindrical vector beams. <i>Nanoscale</i> , 2019 , 11, 1745-1753	7.7	16
240	On the Heisenberg condition in the presence of redundant poles of the S-matrix. <i>Europhysics Letters</i> , 2019 , 126, 30003	1.6	2
239	Tailoring Second-Harmonic Emission from (111)-GaAs Nanoantennas. <i>Nano Letters</i> , 2019 , 19, 3905-3911	11.5	40
238	Coloring solar cells with simultaneously high efficiency by low-index dielectric nanoparticles. <i>Nano Energy</i> , 2019 , 62, 682-690	17.1	19
237	Dynamic Nonlinear Image Tuning through Magnetic Dipole Quasi-BIC Ultrathin Resonators. <i>Advanced Science</i> , 2019 , 6, 1802119	13.6	70
236	High-Efficiency Visible Light Manipulation Using Dielectric Metasurfaces. Scientific Reports, 2019 , 9, 651	Q 4.9	33
235	Reversible Image Contrast Manipulation with Thermally Tunable Dielectric Metasurfaces. <i>Small</i> , 2019 , 15, e1805142	11	23

234	Enhanced Four-Wave Mixing in Doubly Resonant Si Nanoresonators. ACS Photonics, 2019, 6, 1295-1301	6.3	18
233	The High-Order Toroidal Moments and Anapole States in All-Dielectric Photonics. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1800266	8.3	76
232	Microstructured Optical Fiber-Based Plasmonic Sensors 2019 , 203-232		10
231	On beautiful analytic structure of the S-matrix. New Journal of Physics, 2019, 21, 103035	2.9	3
230	Dynamics of destructive Fano resonances. <i>Physical Review A</i> , 2019 , 100,	2.6	4
229	Linear control of light scattering with multiple coherent waves excitation. <i>Optics Letters</i> , 2019 , 44, 5310)-\$313	5
228	Broadband and thermally stable tungsten boride absorber. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 2744	1.7	3
227	Anapole Near Field Laser Based on AlGaAs Nanodisk 2019 ,		1
226	Damage analysis of a perfect broadband absorber by a femtosecond laser. <i>Scientific Reports</i> , 2019 , 9, 15880	4.9	3
225	Nanoparticle-based metasurfaces for angular independent spectral filtering applications. <i>Journal of Applied Physics</i> , 2019 , 126, 213101	2.5	3
224	Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach. <i>IEEE Sensors Journal</i> , 2019 , 19, 962-969	4	29
223	Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 16776-16782	9.5	24
222	Enhanced terahertz magnetic dipole response by subwavelength fiber. APL Photonics, 2018, 3, 051701	5.2	4
221	Third Harmonic Generation Enhanced by Multipolar Interference in Complementary Silicon Metasurfaces. <i>ACS Photonics</i> , 2018 , 5, 1671-1675	6.3	35
220	Ultimate Absorption in Light Scattering by a Finite Obstacle. <i>Physical Review Letters</i> , 2018 , 120, 033902	7.4	19
219	Dynamic Beam Switching by Liquid Crystal Tunable Dielectric Metasurfaces. ACS Photonics, 2018, 5, 174	26.13748	B 150
218	Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. <i>Optics Letters</i> , 2018 , 43, 891-894	3	135
217	Lighting up silicon nanoparticles with Mie resonances. <i>Nature Communications</i> , 2018 , 9, 2964	17.4	70

216	Boosting third-harmonic generation by a mirror-enhanced anapole resonator. <i>Light: Science and Applications</i> , 2018 , 7, 44	16.7	81
215	All-Dielectric Metalattice with Enhanced Toroidal Dipole Response. <i>Advanced Optical Materials</i> , 2018 , 6, 1800302	8.1	37
214	Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor. <i>Materials</i> , 2018 , 11,	3.5	34
213	High-contrast and reversible scattering switching via hybrid metal-dielectric metasurfaces. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 460-467	3	5
212	Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2018 , 35, 2816	1.7	44
211	Simultaneously nearly zero forward and nearly zero backward scattering objects. <i>Optics Express</i> , 2018 , 26, 30393-30399	3.3	20
2 10	Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. <i>Opto-Electronic Advances</i> , 2018 , 1, 18002101-18002112	6.5	38
209	Highly Sensitive Plasmonic Metasensor with Wide Detection Range 2018,		1
208	Selective Third-Harmonic Generation by Structured Light in Mie-Resonant Nanoparticles. <i>ACS Photonics</i> , 2018 , 5, 728-733	6.3	53
207	Isotropic Magnetic Purcell Effect. ACS Photonics, 2018, 5, 678-683	6.3	25
206	Beam Steering with Dielectric Metalattices. ACS Photonics, 2018, 5, 1733-1741	6.3	43
205	Extended SSH Model: Non-Local Couplings and Non-Monotonous Edge States 2018 , 1, 2-16	2.1	10
204	Hybrid nanophotonics. <i>Physics-Uspekhi</i> , 2018 , 61, 1035-1050	2.8	24
203	AI to Bypass Creativity. Will Robots Replace Journalists? (The Answer Is Mes II Information (Switzerland), 2018, 9, 183	2.6	12
202	Fano Resonances in Light Scattering by Finite Obstacles. Springer Series in Optical Sciences, 2018, 473-4	95 .5	
201	Photon drag of a Bose-Einstein condensate. <i>Physical Review B</i> , 2018 , 98,	3.3	12
200	Highly-Efficient Longitudinal Second-Harmonic Generation from Doubly-Resonant AlGaAs Nanoantennas. <i>Photonics</i> , 2018 , 5, 29	2.2	16
199	Toroidal dipole bound states in the continuum. <i>Physical Review B</i> , 2018 , 98,	3.3	96

198	Enhanced Spin Hall Effect of Light in Spheres with Dual Symmetry. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800130	8.3	13
197	Excitation of nonradiating magnetic anapole states with azimuthally polarized vector beams. <i>Beilstein Journal of Nanotechnology</i> , 2018 , 9, 1478-1490	3	20
196	Edge States and Topological Phase Transitions in Chains of Dielectric Nanoparticles. <i>Small</i> , 2017 , 13, 1603190	11	56
195	Fine-Tuning of the Magnetic Fano Resonance in Hybrid Oligomers via fs-Laser-Induced Reshaping. <i>ACS Photonics</i> , 2017 , 4, 536-543	6.3	25
194	Electrically tunable all-dielectric optical metasurfaces based on liquid crystals. <i>Applied Physics Letters</i> , 2017 , 110, 071109	3.4	154
193	Suppression of scattering for small dielectric particles: anapole mode and invisibility. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	48
192	Refractive index sensing with Fano resonances in silicon oligomers. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	16
191	Nonlinear Symmetry Breaking in Symmetric Oligomers. ACS Photonics, 2017, 4, 454-461	6.3	25
190	Antiferromagnetic order in hybrid electromagnetic metamaterials. <i>New Journal of Physics</i> , 2017 , 19, 08	3 <u>0</u> .1 ₅ 3	13
189	Tunable Optical Bistability and Tristability in Nonlinear Graphene-Wrapped Nanospheres. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 11804-11810	3.8	25
188	Anapole nanolasers for mode-locking and ultrafast pulse generation. <i>Nature Communications</i> , 2017 , 8, 15535	17.4	136
187	Giant field enhancement in high-index dielectric subwavelength particles. <i>Scientific Reports</i> , 2017 , 7, 731	4.9	35
186	Scattering Invisibility With Free-Space Field Enhancement of All-Dielectric Nanoparticles. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700103	8.3	12
185	Reexamination of Kerker's conditions by means of the phase diagram. <i>Physical Review A</i> , 2017 , 96,	2.6	16
184	Angle-selective all-dielectric Huygens Imetasurfaces. Journal Physics D: Applied Physics, 2017, 50, 43400	23	36
183	Reversible Thermal Tuning of All-Dielectric Metasurfaces. <i>Advanced Functional Materials</i> , 2017 , 27, 170	0 5 §Ø	90
182	Active tuning of high-Q dielectric metasurfaces. <i>Applied Physics Letters</i> , 2017 , 111, 053102	3.4	36
181	All-Dielectric Nanophotonic Structures: Exploring the Magnetic Component of Light. <i>Springer Series in Optical Sciences</i> , 2017 , 285-313	0.5	4

180	Multimode directionality in all-dielectric metasurfaces. <i>Physical Review B</i> , 2017 , 95,	3.3	82
179	Designing quantum resonant scatterers at subwavelength scale. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2017 , 381, 2860-2865	2.3	3
178	Hybrid anapole modes of high-index dielectric nanoparticles. <i>Physical Review A</i> , 2017 , 95,	2.6	72
177	Ideal Magnetic Dipole Scattering. <i>Physical Review Letters</i> , 2017 , 118, 173901	7.4	101
176	All-dielectric bianisotropic and multimode unidirectional microwave metasurfaces 2017,		1
175	Ultrafast pulse generation in integrated arrays of anapole nanolasers 2017,		2
174	Tunable Dielectric Metasurfaces Based on the Variation of the Refractive Index of the Environment. <i>JETP Letters</i> , 2017 , 106, 709-715	1.2	7
173	Meta-Optics with Mie Resonances. <i>Optics and Photonics News</i> , 2017 , 28, 24	1.9	104
172	Q-factor enhancement in all-dielectric anisotropic nanoresonators. <i>Physical Review B</i> , 2016 , 94,	3.3	9
171	Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles. <i>Optics Letters</i> , 2016 , 41, 3563-6	3	5
170	Multifold Enhancement of Third-Harmonic Generation in Dielectric Nanoparticles Driven by Magnetic Fano Resonances. <i>Nano Letters</i> , 2016 , 16, 4857-61	11.5	138
169	Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles. <i>Physical Review A</i> , 2016 , 93,	2.6	62
168	Optically resonant dielectric nanostructures. <i>Science</i> , 2016 , 354,	33.3	1434
167	Low-threshold optical bistability of graphene-wrapped dielectric composite. <i>Scientific Reports</i> , 2016 , 6, 23354	4.9	26
166	Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas. <i>Nano Letters</i> , 2016 , 16, 7191-7197	11.5	168
165	Experimental demonstration of topological effects in bianisotropic metamaterials. <i>Scientific Reports</i> , 2016 , 6, 22270	4.9	66
164	Energy equipartition and unidirectional emission in a spaser nanolaser. <i>Laser and Photonics Reviews</i> , 2016 , 10, 432-440	8.3	20
163	Generalized Brewster effect in dielectric metasurfaces. <i>Nature Communications</i> , 2016 , 7, 10362	17.4	164

(2015-2016)

162	Polarisation-independent enhanced scattering by tailoring asymmetric plasmonic systems. <i>Nanoscale</i> , 2016 , 8, 6021-7	7.7	5
161	Highly Efficient Broadband Polarization Control With All-Dielectric Metasurfaces 2016,		1
160	Enhanced photonic spin Hall effect with subwavelength topological edge states. <i>Laser and Photonics Reviews</i> , 2016 , 10, 656-664	8.3	25
159	Electrical tuning of all dielectric metasurfaces 2016,		1
158	Invited Article: Broadband highly efficient dielectric metadevices for polarization control. <i>APL Photonics</i> , 2016 , 1, 030801	5.2	248
157	SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations 2016,		1
156	Strong Magnetic Response of Optical Nanofibers. ACS Photonics, 2016, 3, 972-978	6.3	13
155	Polarization control over electric and magnetic dipole resonances of dielectric nanoparticles on metallic films. <i>Laser and Photonics Reviews</i> , 2016 , 10, 799-806	8.3	67
154	Circular dichroism induced by Fano resonances in planar chiral oligomers. <i>Laser and Photonics Reviews</i> , 2016 , 10, 137-146	8.3	7 ²
153	Electric and magnetic hotspots in dielectric nanowire dimers. <i>Nanoscale</i> , 2015 , 7, 5963-8	7:7	35
152	Functional and nonlinear optical metasurfaces. Laser and Photonics Reviews, 2015, 9, 195-213	8.3	327
151	Circular dichroism from Fano resonances in planar chiral oligomers 2015,		2
150	Nonlinear Interference and Tailorable Third-Harmonic Generation from Dielectric Oligomers. <i>ACS Photonics</i> , 2015 , 2, 578-582	6.3	99
149	All-dielectric multilayer cylindrical structures for invisibility cloaking. <i>Scientific Reports</i> , 2015 , 5, 9574	4.9	37
148	Subwavelength topological edge States in optically resonant dielectric structures. <i>Physical Review Letters</i> , 2015 , 114, 123901	7.4	106
147	Probing magnetic and electric optical responses of silicon nanoparticles. <i>Applied Physics Letters</i> , 2015 , 106, 171110	3.4	50
146	Interplay of Magnetic Responses in All-Dielectric Oligomers To Realize Magnetic Fano Resonances. <i>ACS Photonics</i> , 2015 , 2, 724-729	6.3	82
145	Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence. <i>Nanoscale</i> , 2015 , 7, 20405-13	7.7	23

144	Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles. <i>Optics Express</i> , 2015 , 23, 24738-47	3.3	29
143	Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. <i>Nano Letters</i> , 2015 , 15, 6985-90	11.5	272
142	Substrate-Induced Resonant Magnetoelectric Effects for Dielectric Nanoparticles. <i>ACS Photonics</i> , 2015 , 2, 1423-1428	6.3	90
141	Invisible nanowires with interfering electric and toroidal dipoles. <i>Optics Letters</i> , 2015 , 40, 2293-6	3	93
140	Superabsorption of light by nanoparticles. <i>Nanoscale</i> , 2015 , 7, 18897-901	7.7	11
139	Hybrid Metal-Dielectric Nanoantennas for Directional Emission Enhancement 2015,		1
138	Superabsorption of light by multilayer nanowires. <i>Nanoscale</i> , 2015 , 7, 17658-63	7.7	20
137	Nonradiating anapole modes in dielectric nanoparticles. <i>Nature Communications</i> , 2015 , 6, 8069	17.4	457
136	Photonic topological Chern insulators based on Tellegen metacrystals. <i>New Journal of Physics</i> , 2015 , 17, 125015	2.9	21
135	Tunable nonlinear graphene metasurfaces. <i>Physical Review B</i> , 2015 , 92,	3.3	46
134	Optical Metacages. <i>Physical Review Letters</i> , 2015 , 115, 215501	7.4	16
133	Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers. <i>Physical Review B</i> , 2015 , 92,	3.3	28
132	Comment on "electromagnetic radiation under explicit symmetry breaking". <i>Physical Review Letters</i> , 2015 , 115, 119701	7.4	4
131	An antenna model for the Purcell effect. <i>Scientific Reports</i> , 2015 , 5, 12956	4.9	115
130	Toroidal dipole-induced transparency in corelihell nanoparticles. <i>Laser and Photonics Reviews</i> , 2015 , 9, 564-570	8.3	79
129	Elusive Pure Anapole Excitation in Homogenous Spherical Nanoparticles with Radial Anisotropy. Journal of Nanomaterials, 2015 , 2015, 1-7	3.2	10
128	Fano Resonance Enhanced Nonreciprocal Absorption and Scattering of Light. <i>Photonics</i> , 2015 , 2, 745-7	572.2	6
127	Mapping plasmonic topological states at the nanoscale. <i>Nanoscale</i> , 2015 , 7, 11904-8	7.7	61

126	Metamaterials Tunable with Liquid Crystals. Springer Series in Materials Science, 2015, 237-253	0.9	3
125	Observation of Fano resonances in all-dielectric nanoparticle oligomers. <i>Small</i> , 2014 , 10, 1985-90	11	148
124	Reconfigurable nonreciprocity with a nonlinear Fano diode. <i>Physical Review B</i> , 2014 , 89,	3.3	39
123	Multi-field modeling of a Cosserat lattice: Models, wave filtering, and boundary effects. <i>European Journal of Mechanics, A/Solids</i> , 2014 , 46, 96-105	3.7	16
122	Nonlocal surface plasmon amplification by stimulated emission of radiation. <i>Physical Review A</i> , 2014 , 89,	2.6	10
121	Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles. <i>ACS Photonics</i> , 2014 , 1, 101-1	05 .3	95
120	Subwavelength waveguides composed of dielectric nanoparticles. Physical Review B, 2014, 89,	3.3	68
119	Split-ball resonator as a three-dimensional analogue of planar split-rings. <i>Nature Communications</i> , 2014 , 5, 3104	17.4	44
118	Bending of electromagnetic waves in all-dielectric particle array waveguides. <i>Applied Physics Letters</i> , 2014 , 105, 181116	3.4	33
117	Optimization of cloaking in all dielectric multi-layer structures 2014 ,		1
117	Optimization of cloaking in all dielectric multi-layer structures 2014 , Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92	11.5	383
ĺ	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano</i>	11.5	
116	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92 Control of light scattering by nanoparticles with optically-induced magnetic responses. <i>Chinese</i>		383
116	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92 Control of light scattering by nanoparticles with optically-induced magnetic responses. <i>Chinese Physics B</i> , 2014 , 23, 047806	1.2	383 42
116 115 114	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92 Control of light scattering by nanoparticles with optically-induced magnetic responses. <i>Chinese Physics B</i> , 2014 , 23, 047806 Second-harmonic generation by a graphene nanoparticle. <i>Physical Review B</i> , 2014 , 90, Light scattering by nonlinear cylindrical multilayer structures. <i>Journal of the Optical Society of</i>	1.2 3.3	383 42 58
116 115 114 113	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92 Control of light scattering by nanoparticles with optically-induced magnetic responses. <i>Chinese Physics B</i> , 2014 , 23, 047806 Second-harmonic generation by a graphene nanoparticle. <i>Physical Review B</i> , 2014 , 90, Light scattering by nonlinear cylindrical multilayer structures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 1595	1.2 3.3	383 42 58
116 115 114 113	Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. <i>Nano Letters</i> , 2014 , 14, 6488-92 Control of light scattering by nanoparticles with optically-induced magnetic responses. <i>Chinese Physics B</i> , 2014 , 23, 047806 Second-harmonic generation by a graphene nanoparticle. <i>Physical Review B</i> , 2014 , 90, Light scattering by nonlinear cylindrical multilayer structures. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 1595 Near-Field Mapping of Optical Modes on All-Dielectric Silicon Nanodisks. <i>ACS Photonics</i> , 2014 , 1, 794-79	1.2 3.3	383 42 58 14 58

108	Near-field mapping of Fano resonances in all-dielectric oligomers. <i>Applied Physics Letters</i> , 2014 , 104, 021104	3.4	59
107	Superscattering of light optimized by a genetic algorithm. <i>Applied Physics Letters</i> , 2014 , 105, 011109	3.4	52
106	Hybrid nanoantennas for directional emission enhancement. <i>Applied Physics Letters</i> , 2014 , 105, 221109	3.4	67
105	Fano resonances in high-index dielectric photonic structures 2014 ,		2
104	Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. <i>Small</i> , 2014 , 10, 576-83	11	29
103	Nano-Fano Resonances and Topological Optics 2014 , 285-309		
102	Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. <i>Journal of Optics (United Kingdom)</i> , 2013 , 15, 073001	1.7	50
101	Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. <i>ACS Nano</i> , 2013 , 7, 7824-32	16.7	754
100	Revisiting the physics of Fano resonances for nanoparticle oligomers. <i>Physical Review A</i> , 2013 , 88,	2.6	109
99	Applied physics. Polarization traffic control for surface plasmons. <i>Science</i> , 2013 , 340, 283-4	33.3	47
98	Dual-channel spontaneous emission of quantum dots in magnetic metamaterials. <i>Nature Communications</i> , 2013 , 4, 2949	17.4	52
97	Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. <i>ACS Nano</i> , 2013 , 7, 11138-46	16.7	47
96	All-dielectric nanoantennas 2013 ,		3
95	Optical nanoantennas. <i>Physics-Uspekhi</i> , 2013 , 56, 539-564	2.8	146
94	Compact surface Fano states embedded in the continuum of waveguide arrays. <i>Physical Review Letters</i> , 2013 , 111, 240403	7.4	137
93	Directional visible light scattering by silicon nanoparticles. <i>Nature Communications</i> , 2013 , 4, 1527	17.4	746
92	Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. <i>Nanoscale</i> , 2013 , 5, 6395-403	7.7	47
91	Cloaking and enhanced scattering of core-shell plasmonic nanowires. <i>Optics Express</i> , 2013 , 21, 10454-9	3.3	56

(2012-2013)

90	Controlling light scattering and polarization by spherical particles with radial anisotropy. <i>Optics Express</i> , 2013 , 21, 8091-100	3.3	17
89	Electro-optical switching by liquid-crystal controlled metasurfaces. <i>Optics Express</i> , 2013 , 21, 8879-85	3.3	130
88	Cascaded four-wave mixing in tapered plasmonic nanoantenna. Optics Letters, 2013, 38, 79-81	3	11
87	Scattering of core-shell nanowires with the interference of electric and magnetic resonances. <i>Optics Letters</i> , 2013 , 38, 2621-4	3	64
86	Multifrequency tapered plasmonic nanoantennas. Optics Communications, 2012, 285, 821-824	2	20
85	Fano resonances in all-dielectric oligomers. <i>Nano Letters</i> , 2012 , 12, 6459-63	11.5	257
84	Plasmonic nanoantennas for efficient control of polarization-entangled photon pairs. <i>Physical Review A</i> , 2012 , 86,	2.6	20
83	Surface bound states in the continuum. <i>Physical Review Letters</i> , 2012 , 108, 070401	7.4	140
82	Paradoxes in laser heating of plasmonic nanoparticles. New Journal of Physics, 2012, 14, 093022	2.9	39
81	All-dielectric optical nanoantennas 2012 ,		5
81 80	All-dielectric optical nanoantennas 2012 , Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007	1.6	5 9
		1.6 2.5	
80	Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007 Broadband scattering by tapered nanoantennas. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 ,		9
80 79	Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007 Broadband scattering by tapered nanoantennas. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 466-468	2.5	9
80 79 78	Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007 Broadband scattering by tapered nanoantennas. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 466-468 All-dielectric optical nanoantennas. <i>Optics Express</i> , 2012 , 20, 20599-604	2.5	9 9 3 ⁸ 7
80 79 78 77	Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007 Broadband scattering by tapered nanoantennas. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 466-468 All-dielectric optical nanoantennas. <i>Optics Express</i> , 2012 , 20, 20599-604 Optical Yagi-Uda nanoantennas. <i>Nanophotonics</i> , 2012 , 1, 65-81	2.5 3·3 6.3	9 9 387 90
80 79 78 77 76	Nonlinear Mach-Zehnder-Fano interferometer. <i>Europhysics Letters</i> , 2012 , 97, 44007 Broadband scattering by tapered nanoantennas. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 466-468 All-dielectric optical nanoantennas. <i>Optics Express</i> , 2012 , 20, 20599-604 Optical Yagi-Uda nanoantennas. <i>Nanophotonics</i> , 2012 , 1, 65-81 Magnetic light. <i>Scientific Reports</i> , 2012 , 2, 492 Polarization-independent Fano resonances in arrays of core-shell nanoparticles. <i>Physical Review B</i> ,	2.5 3·3 6.3 4·9	9 387 90 762

7 ²	Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. <i>ACS Nano</i> , 2012 , 6, 5489-97	16.7	238
71	An explicit finite-difference method to calculate liquid crystal re-orientation dynamics 2012,		1
70	Magnetic Light: Optical Magnetism of Dielectric Nanoparticles. <i>Optics and Photonics News</i> , 2012 , 23, 35	1.9	13
69	Optical vortices at Fano resonances. <i>Optics Letters</i> , 2012 , 37, 4985-7	3	15
68	Non-Rayleigh scattering behavior for anisotropic Rayleigh particles. <i>Optics Letters</i> , 2012 , 37, 3390-2	3	12
67	Actively tunable bistable optical Yagi-Uda nanoantenna. <i>Optics Express</i> , 2012 , 20, 8929-38	3.3	47
66	Unconventional Fano resonances in light scattering by small particles. <i>Europhysics Letters</i> , 2012 , 97, 440	00:56	34
65	Resonant Light Scattering in Photonic Devices. Series in Optics and Optoelectronics, 2012, 429-444		
64	Influence of the backward propagating waves on the twist optical Fr\u00e4dericksz transition in planar nematic films. <i>Liquid Crystals</i> , 2011 , 38, 1021-1026	2.3	
63	Laser Pulse Heating of Spherical Metal Particles. <i>Physical Review X</i> , 2011 , 1,	9.1	18
62	Active control over nanofocusing with nanorod plasmonic antennas. <i>Optics Express</i> , 2011 , 19, 5888-94	3.3	22
61	Plasmonic Airy beam manipulation in linear optical potentials. <i>Optics Letters</i> , 2011 , 36, 1164-6	3	101
60	Huygens optical elements and YagiDda nanoantennas based on dielectric nanoparticles. <i>JETP Letters</i> , 2011 , 94, 593-598	1.2	79
59	Polychromatic nanofocusing of surface plasmon polaritons. <i>Physical Review B</i> , 2011 , 83,	3.3	19
58	Bouncing plasmonic waves in half-parabolic potentials. <i>Physical Review A</i> , 2011 , 84,	2.6	2
57	An arrayed nanoantenna for broadband light emission and detection. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 347-349	2.5	29
56	Impedance Matching Induce High Transmission and Flat Response Band-Pass Plasmonic Waveguides. <i>Plasmonics</i> , 2011 , 6, 337-343	2.4	24
55	Mode transformation in waveguiding plasmonic structures. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2011 , 9, 207-212	2.6	12

(2008-2011)

54	Nonlinearly PT-symmetric systems: Spontaneous symmetry breaking and transmission resonances. <i>Physical Review A</i> , 2011 , 84,	2.6	171
53	Manipulation of the resonance interaction in Mach-Zehnder-Fano interferometers. <i>Physical Review A</i> , 2011 , 84,	2.6	9
52	Manipulation of Airy plasmon beams by linear optical potentials 2011,		1
51	Complete spectral gap in coupled dielectric waveguides embedded into metal. <i>Applied Physics Letters</i> , 2010 , 97, 021106	3.4	6
50	Reversible optical nonreciprocity in periodic structures with liquid crystals. <i>Applied Physics Letters</i> , 2010 , 96, 063302	3.4	59
49	Optomechanics of liquid crystals for dynamical optical response of photonic structures. <i>Journal of Optics (United Kingdom)</i> , 2010 , 12, 124006	1.7	2
48	Off-resonance field enhancement by spherical nanoshells. <i>Physical Review A</i> , 2010 , 81,	2.6	38
47	Fano resonances in nanoscale structures. <i>Reviews of Modern Physics</i> , 2010 , 82, 2257-2298	40.5	1967
46	A discrete model and analysis of one-dimensional deformations in a structural interface with micro-rotations. <i>Mechanics Research Communications</i> , 2010 , 37, 225-229	2.2	17
45	Multi-field approach in mechanics of structural solids. <i>International Journal of Solids and Structures</i> , 2010 , 47, 510-525	3.1	35
44	Nonlinear Fano-Feshbach resonances. <i>Physical Review E</i> , 2009 , 79, 026611	2.4	26
43	Machlehnder Hano interferometer. Applied Physics Letters, 2009, 95, 121109	3.4	13
42	Instabilities and quasi-localized states in nonlinear Fano-like systems. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 3586-3590	2.3	8
41	Polarizational nonlinear optical response of photonic structures with a liquid crystal defect. <i>Optics Letters</i> , 2009 , 34, 488-90	3	6
40	Non-Rayleigh limit of the Lorenz-Mie solution and suppression of scattering by spheres of negative refractive index. <i>Physical Review A</i> , 2009 , 80,	2.6	35
39	Dynamics and instability of nonlinear Fano resonances in photonic crystals. <i>Physical Review A</i> , 2009 , 79,	2.6	23
38	Light scattering by a finite obstacle and fano resonances. <i>Physical Review Letters</i> , 2008 , 100, 043903	7.4	98
37	Fano Resonances: A Discovery that Was Not Made 100 Years Ago. <i>Optics and Photonics News</i> , 2008 , 19, 48	1.9	15

36	Coupled-resonator-induced reflection in photonic-crystal waveguide structures. <i>Optics Express</i> , 2008 , 16, 11647-59	3.3	69
35	Light-induced orientational effects in periodic photonic structures with pure and dye-doped nematic liquid crystal defects. <i>Physical Review A</i> , 2008 , 78,	2.6	16
34	Observation of light-induced reorientational effects in periodic structures with planar nematic-liquid-crystal defects. <i>Applied Physics Letters</i> , 2008 , 92, 203304	3.4	11
33	All-optical switching and multistability in photonic structures with liquid crystal defects. <i>Applied Physics Letters</i> , 2008 , 92, 253306	3.4	32
32	Multifield model for Cosserat media. <i>Journal of Mechanics of Materials and Structures</i> , 2008 , 3, 1365-138	32.2	15
31	Localized modes and bistable scattering in nonlinear network junctions. <i>Physical Review E</i> , 2007 , 75, 046	5 6.0 j2	17
30	Low-threshold bistability of slow light in photonic-crystal waveguides. <i>Optics Express</i> , 2007 , 15, 12380-5	3.3	34
29	All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures. <i>Physical Review E</i> , 2006 , 74, 046603	2.4	72
28	Tunable all-optical switching in periodic structures with liquid-crystal defects. <i>Optics Express</i> , 2006 , 14, 2839-44	3.3	44
27	Resonant light-light interaction in slab waveguides: angular filters and spectral hole burning 2006 , 5975, 297		
26	Sharp bends in photonic crystal waveguides as nonlinear Fano resonators. <i>Optics Express</i> , 2005 , 13, 396	93756	38
25	Fano resonance in quadratic waveguide arrays. <i>Optics Letters</i> , 2005 , 30, 872-4	3	9
24	Engineering Fano resonances in discrete arrays. <i>Physical Review E</i> , 2005 , 72, 056611	2.4	78
23	Multi-field continuum theory for medium with microscopic rotations. <i>International Journal of Solids and Structures</i> , 2005 , 42, 6245-6260	3.1	20
22	Nonlinear Fano resonance and bistable wave transmission. <i>Physical Review E</i> , 2005 , 71, 036626	2.4	98
21	Resonant light scattering by optical solitons. <i>Physical Review Letters</i> , 2005 , 95, 023901	7.4	14
20	Resonant plasmon scattering by discrete breathers in Josephson junction ladders. <i>Physical Review B</i> , 2005 , 71,	3.3	14
19	Multi-field Modelling of Cosserat solids. <i>Journal of the Mechanical Behavior of Materials</i> , 2005 , 16, 379-3	1 912 9	6

18	Discrete Breathers Close to the Anticontinuum Limit: Existence and Wave Scattering. <i>International Journal of Modern Physics B</i> , 2003 , 17, 3996-4002	1.1	5
17	Spin filters with Fano dots. European Physical Journal B, 2003 , 37, 399-403	1.2	63
16	Resonant scattering of solitons. <i>Chaos</i> , 2003 , 13, 874-9	3.3	32
15	ac field-induced quantum rectification effect in tunnel junctions. Physical Review B, 2003, 68,	3.3	7
14	Many-Field Theory for Crystals Containing Particles with Rotational Degrees of Freedom. <i>Ferroelectrics</i> , 2003 , 283, 127-139	0.6	1
13	Wave scattering by discrete breathers. <i>Chaos</i> , 2003 , 13, 596-609	3.3	32
12	Fano resonances with discrete breathers. <i>Physical Review Letters</i> , 2003 , 90, 084101	7.4	45
11	Broken symmetries and directed collective energy transport in spatially extended systems. <i>Physical Review Letters</i> , 2002 , 88, 184101	7.4	68
10	Incommensurate dynamics of resonant breathers in Josephson junction ladders. <i>Physical Review B</i> , 2002 , 65,	3.3	11
9	ac-driven quantum spins: Resonant enhancement of transverse dc magnetization. <i>Physical Review B</i> , 2002 , 65,	3.3	7
8	Breathers in Josephson junction ladders: resonances and electromagnetic wave spectroscopy. <i>Physical Review E</i> , 2001 , 64, 066601	2.4	30
7	Inelastic three-soliton collisions in a weakly discrete sine-Gordon system. Nonlinearity, 2000, 13, 837-84	81.7	12
6	Phonon emission from a discrete sine-Gordon breather. Computational Materials Science, 2000, 18, 303-	307	2
5	Effect of discreteness on a sine-Gordon three-soliton solution. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1998 , 246, 129-134	2.3	14
4	Polarization Switching Between Electric and Magnetic Quasi-Trapped Modes in Bianisotropic All-Dielectric Metasurfaces. <i>Laser and Photonics Reviews</i> ,2100206	8.3	1
3	Strong Coupling of Exciton and High- Q Mode in All-Perovskite Metasurfaces. <i>Advanced Optical Materials</i> ,2101120	8.1	8
2	Theory, Observation, and Ultrafast Response of the Hybrid Anapole Regime in Light Scattering. Laser and Photonics Reviews,2100114	8.3	12
1	Ultrathin Sb 2 Se 3 Nanowires for Polarimetric Imaging Photodetectors with a High Signal/Noise Ratio. <i>Advanced Materials Interfaces</i> ,2200448	4.6	3