Ana Maria Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206382/publications.pdf

Version: 2024-02-01

69 papers

1,578 citations

331259 21 h-index 315357 38 g-index

70 all docs

70 docs citations

70 times ranked

1661 citing authors

#	Article	IF	CITATIONS
1	Luminescence of Europium(III) and Manganese(II) in Barium and Zinc Orthosilicate. Chemistry of Materials, 2001, 13, 21-27.	3.2	288
2	Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor. Journal of Applied Physics, 2005, 98, 063529.	1.1	70
3	Er, Yb Doped Yttrium Based Nanosized Phosphors: Particle Size, "Host Lattice―and Doping Ion Concentration Effects on Upconversion Efficiency. Journal of Fluorescence, 2006, 16, 461-468.	1.3	65
4	The effect of Eu3+ ion doping concentration in Gd2O3 fine spherical particles. Journal of Alloys and Compounds, 2002, 344, 276-279.	2.8	62
5	Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: efficient materials for up-converting phosphor technology field. Journal of Alloys and Compounds, 2004, 374, 181-184.	2.8	58
6	Eu3+ as a spectroscopic probe in phosphors based on spherical fine particle gadolinium compounds. Solid State Sciences, 2001, 3, 785-790.	0.8	57
7	Morphological and luminescent studies on nanosized Er, Yb–Yttrium oxide up-converter prepared from different precursors. Journal of Luminescence, 2005, 113, 174-182.	1.5	57
8	Solvothermal method to obtain europium-doped yttrium oxide. Journal of Solid State Chemistry, 2003, 171, 268-272.	1.4	56
9	Recent prospects on phosphor-converted LEDs for lighting, displays, phototherapy, and indoor farming. Journal of Luminescence, 2021, 237, 118167.	1.5	50
10	The effect of Eu3+ concentration on the Y2O3 host lattice obtained from citrate precursors. Materials Chemistry and Physics, 2009, 113, 587-590.	2.0	47
11	New X-ray powder diffraction data and Rietveld refinement for Gd 2 O 3 monodispersed fine spherical particles. Journal of Solid State Chemistry, 2003, 171, 420-423.	1.4	38
12	Red phosphor based on Eu ³⁺ -isoelectronically doped Ba ₂ SiO ₄ obtained <i>via</i> sol–gel route for solid state lightning. RSC Advances, 2017, 7, 53752-53762.	1.7	38
13	Eu3+-O2â^' associates luminescence in Ba2SiO4. Journal of Luminescence, 1997, 72-74, 244-246.	1.5	35
14	Luminescent and morphological studies of Tm-doped Lu3Al5O12 and Y3Al5O12 fine powders for scintillator detector application. Journal of Alloys and Compounds, 2004, 374, 169-172.	2.8	30
15	Y2O3:Eu3+ (5mol%) with Ag nanoparticles prepared by citrate precursor. Journal of Solid State Chemistry, 2010, 183, 2110-2115.	1.4	30
16	Thermal decomposition and rehydration of strontium oxalate: morphological evolution. Solid State Sciences, 2001, 3, 443-452.	0.8	28
17	Characterization and spectroscopic studies of Eu3+ and Tb3+ complexes with 2,2 \hat{a} e²-bipyridine-4,4 \hat{a} e²-dicarboxylic acid. Journal of Alloys and Compounds, 2002, 344, 285-288.	2.8	25
18	Sr2CeO4: Electronic and structural properties. Journal of Alloys and Compounds, 2014, 608, 73-78.	2.8	25

#	Article	IF	CITATIONS
19	Energy transfer between terbium and europium ions in barium orthosilicate phosphors obtained from sol-gel route. Journal of Luminescence, 2018, 199, 372-378.	1.5	25
20	Influence of Zn2+ co-doping ion on Eu3+–O2â~' associate luminescence in Sr2SiO4. Journal of Alloys and Compounds, 2002, 344, 312-315.	2.8	22
21	Morphological study of Sr2CeO4 blue phosphor with fine particles. Quimica Nova, 2004, 27, 706-708.	0.3	22
22	Red phosphor based on Eu3+-doped Y2(MoO4)3 incorporated with Au NPs synthesized via Pechini's method. Optical Materials, 2018, 84, 137-145.	1.7	21
23	Luminescent and morphological study of Sr2CeO4 blue phosphor prepared from oxalate precursors. Journal of Luminescence, 2011, 131, 25-29.	1.5	20
24	Film based on Y2O3:Eu3+ (5mol% of Eu3+) for flat panel display. Thin Solid Films, 2012, 524, 299-303.	0.8	20
25	A low-cost ultrasonic spray dryer to produce spherical microparticles from polymeric matrices. Quimica Nova, 2007, 30, 1744-1746.	0.3	20
26	Study on the structural and electrocatalytic properties of Ba ²⁺ - and Eu ³⁺ -doped silica xerogels as sensory platforms. RSC Advances, 2016, 6, 104529-104536.	1.7	19
27	Tunable blue-green emission and energy transfer properties in Ba2SiO4:Tb3+ obtained from sol-gel method. Journal of Luminescence, 2019, 214, 116604.	1.5	18
28	Characterization and spectroscopic studies of Eu3+ complexes with 3-phenyl-2,4-pentanedione. Journal of Alloys and Compounds, 2004, 374, 151-153.	2.8	17
29	Time-resolved spectroscopy studies of Gd2SiO5:Ce3+ from spherical particles. Journal of Alloys and Compounds, 2002, 344, 323-326.	2.8	16
30	A route to obtain Gd2O3:Nd3+ with different particle size. Materials Chemistry and Physics, 2011, 127, 40-44.	2.0	16
31	Nanocrystalline RE2O3:Tm3+ (RE: Gd3+, Y3+) Blue Phosphors Synthesized via the Combustion Method. Journal of Fluorescence, 2006, 16, 411-421.	1.3	15
32	Spherical-shaped Y2O3:Eu3+ nanoparticles with intense photoluminescence emission. Ceramics International, 2015, 41, 1189-1195.	2.3	14
33	The influence of the complexing agent on the luminescence of multicolor-emitting Y2O3:Eu3+,Er3+,Yb3+ phosphors obtained by the Pechini's method. Materials Chemistry and Physics, 2021, 257, 123840.	2.0	14
34	Synthesis, structural and morphological characterization of CeO2-ZnO nanosized powder systems from Pechini's method. Ecletica Quimica, 2005, 30, 59-64.	0.2	13
35	Red-light-emitting polymer composite based on PVDF membranes and Europium phosphor using Buriti Oil as plasticizer. Materials Chemistry and Physics, 2018, 217, 160-167.	2.0	13
36	Effects of the Pechini's modified synthetic route on structural and photophysical properties of Eu3+ or Tb3+-doped LaAlO3. Materials Research Bulletin, 2021, 143, 111462.	2.7	13

#	Article	IF	CITATIONS
37	Nanostructured hybrid films containing nanophosphor: Fabrication and electronic spectral properties. Journal of Alloys and Compounds, 2012, 541, 365-371.	2.8	12
38	Supramolecular arrangements of an organometallic forming nanostructured films. Materials Research, 2014, 17, 1375-1383.	0.6	12
39	Eu ³⁺ â€tetrakis βâ€diketonate complexes for solidâ€state lighting application. Luminescence, 2019, 34, 877-886.	1.5	11
40	Eu3+ complex/polymer films for light-emitting diode applications. Optical Materials, 2019, 96, 109323.	1.7	11
41	Decorated silica particles with terbium complexes as luminescent biomarker for cell imaging. Optical Materials, 2019, 90, 57-63.	1.7	10
42	Sprayed films of europium complexes toward light conversion devices. Journal of Luminescence, 2014, 153, 272-280.	1.5	9
43	Photoluminescence and Scintillation Modulation Upon UV/Xâ€rayâ€Induced Photochromism in Europium Tungstate Phosphors. ChemistrySelect, 2017, 2, 3538-3548.	0.7	9
44	Red-Emitting Coatings for Multifunctional UV/Red Emitting LEDs Applied in Plant Circadian Rhythm Control. ECS Journal of Solid State Science and Technology, 2020, 9, 016008.	0.9	9
45	Photoluminescence of Eu3+-doped CaZrO red-emitting phosphors synthesized via microwave-assisted hydrothermal method. Materials Today Communications, 2020, 24, 100966.	0.9	9
46	A spectroscopic experimental and semi-empirical study of [Eu(salen)2] as a red-emitter for phosphor-converted UV LED. Optik, 2021, 243, 167454.	1.4	9
47	Europium Luminescent Polymeric Microspheres Fabricated by Spray Drying Process. Journal of Fluorescence, 2008, 18, 695-700.	1.3	8
48	Design of a red-emitter hybrid material for bioimaging: europium complexes grafted on silica particles. Materials Today Chemistry, 2019, 14, 100204.	1.7	8
49	Red-Emitting Hybrid Based on Eu3+-dbm Complex Anchored on Silica Nanoparticles Surface by Carboxylic Acid for Biomarker Application. Materials, 2020, 13, 5494.	1.3	8
50	Morfologia e cristalinidade de hidroxicarbonato de zinco obtido via precipitação homogênea: influência dos ânions cloreto e nitrato. Quimica Nova, 2000, 23, 627-631.	0.3	7
51	Evaluation of cryo-treatment in the luminescent properties of PVDF/Eu2O3 composite obtained by using buriti oil as additive. Solid State Sciences, 2019, 92, 24-30.	1.5	7
52	Phosphor-based green-emitting coatings for circadian lighting. Journal of Luminescence, 2020, 224, 117298.	1.5	7
53	Syntheses and characterization of Schiff base ligands and their Ir(III) complexes as coating for phosphor-converted LEDs. Optik, 2020, 219, 164995.	1.4	7
54	Multicolor-emitting luminescent Y2O3:RE3+@SiO2-[RE3+(\hat{l}^2 -diketone)3] core@shell hybrids featuring dual RE3+ activator centers. Journal of Alloys and Compounds, 2020, 843, 155811.	2.8	7

#	Article	IF	CITATIONS
55	Synthesis and structural characterization of Eu(III)-doped Zn7Sb2O12. Journal of Materials Science, 2010, 45, 4216-4223.	1.7	6
56	Luminescence and cytotoxic study of red emissive europium(III) complex as a cell dye. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 422, 113552.	2.0	6
57	Co-Deposition of Gold Nanoparticles and Metalloporphyrin Using the Langmuir–Blodgett (LB) Technique for Surface-Enhanced Raman Scattering (SERS). Applied Spectroscopy, 2015, 69, 451-456.	1.2	5
58	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2000422.	1.6	5
59	Up-converter nanophosphor Y2O2S:Er,Yb aminofunctionalized containing or not spherical silica conjugated with BSA. Journal of Luminescence, 2009, 129, 1726-1730.	1.5	4
60	Luminóforo azul preparado a partir do método de combustão. Ecletica Quimica, 2002, 27, 187-196.	0.2	4
61	Eu(II)â€Activated Silicates for UV Lightâ€Emitting Diodes Tuning into Warm White Light. Advanced Engineering Materials, 2020, 22, 2070036.	1.6	3
62	Estudo da decomposição térmica de oxalato de estrÃ′ncio dopado com cério(III) como precursor de materiais luminescentes. Ecletica Quimica, 2002, 27, 315-328.	0.2	3
63	Langmuir–Schaefer films based on highly hydrophobic Eu3+ tetrakis-β-diketonate complexes containing amphiphilic counterions. Journal of Luminescence, 2021, 231, 117815.	1.5	2
64	Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study. Photochemical and Photobiological Sciences, 2022, 21, 1077-1090.	1.6	2
65	Red-emitting BaAl2O4:Eu3+Âsynthesized via Pechini and sol–gel routes: a comparison of luminescence and structure. Journal of Materials Science, 2022, 57, 170-184.	1.7	1
66	Study of the Influence of Eu ³⁺ Ions in the Bandgap of K ₂ NdNb ₅ O ₁₅ Nanopowders. Materials Science Forum, 2015, 820, 378-383.	0.3	0
67	New crown-ether Dibenzo-18-crown-4 ligand via sequential one-pot reaction. Results in Chemistry, 2021, 3, 100221.	0.9	0
68	ESTUDO DO COMPORTAMENTO ESPECTROSCÓPICO DO LIGANTE BASE DE SCHIFF N,N',N'',N'''.TETRASALICIIDENO- 1,2,4,5-TETRAAMINOBENZOATO E SEUS COMPLEXOS Colloquium Exactarum, 2014, 6, 97-104.	COMCOB	RE(II).
69	Método Team Based Learning no ensino e aprendizagem de QuÃmica Inorgânica aplicada. Revista Docência Do Ensino Superior, 0, 10, 1-32.	0.1	O