
Andries Kalsbeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2206282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothalamic integration of central and peripheral clocks. Nature Reviews Neuroscience, 2001, 2, 521-526.	10.2	492
2	Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. European Journal of Neuroscience, 1999, 11, 1535-1544.	2.6	413
3	Circadian clocks and insulin resistance. Nature Reviews Endocrinology, 2019, 15, 75-89.	9.6	395
4	SCN Outputs and the Hypothalamic Balance of Life. Journal of Biological Rhythms, 2006, 21, 458-469.	2.6	392
5	Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 2014, 20, 41-53.	16.2	342
6	The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. Journal of Comparative Neurology, 2003, 464, 36-48.	1.6	316
7	Circadian rhythms in the hypothalamo–pituitary–adrenal (HPA) axis. Molecular and Cellular Endocrinology, 2012, 349, 20-29.	3.2	309
8	Selective parasympathetic innervation of subcutaneous and intra-abdominal fat $\hat{a} \in$ "functional implications. Journal of Clinical Investigation, 2002, 110, 1243-1250.	8.2	291
9	A Daily Rhythm in Glucose Tolerance. Diabetes, 2001, 50, 1237-1243.	0.6	286
10	Circadian control of glucose metabolism. Molecular Metabolism, 2014, 3, 372-383.	6.5	248
11	A Diurnal Rhythm of Stimulatory Input to the Hypothalamo–Pituitary–Adrenal System as Revealed by Timed Intrahypothalamic Administration of the Vasopressin V1Antagonist. Journal of Neuroscience, 1996, 16, 5555-5565.	3.6	247
12	Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell and Tissue Research, 2002, 309, 109-118.	2.9	215
13	Suprachiasmatic GABAergic Inputs to the Paraventricular Nucleus Control Plasma Glucose Concentrations in the Rat via Sympathetic Innervation of the Liver. Journal of Neuroscience, 2004, 24, 7604-7613.	3.6	211
14	Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Research, 1992, 580, 62-67.	2.2	208
15	Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Frontiers in Neuroscience, 2017, 11, 617.	2.8	196
16	Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms, 2019, 7, 41.	3.6	191
17	Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). Journal of Comparative Neurology, 1993, 332, 293-314.	1.6	188
18	Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and Cellular Endocrinology, 2015, 418, 74-88.	3.2	183

#	Article	IF	CITATIONS
19	Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms. European Journal of Neuroscience, 2003, 17, 221-228.	2.6	163
20	Tracing from Fat Tissue, Liver, and Pancreas: A Neuroanatomical Framework for the Role of the Brain in Type 2 Diabetes. Endocrinology, 2006, 147, 1140-1147.	2.8	162
21	Impact of nutrients on circadian rhythmicity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R337-R350.	1.8	159
22	Vasopressin and the Output of the Hypothalamic Biological Clock. Journal of Neuroendocrinology, 2010, 22, 362-372.	2.6	157
23	The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved?. European Journal of Neuroscience, 2005, 22, 2531-2540.	2.6	154
24	The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 416-431.	3.8	154
25	Organization of circadian functions: interaction with the body. Progress in Brain Research, 2006, 153, 341-360.	1.4	152
26	The Suprachiasmatic Nucleus Controls Circadian Energy Metabolism and Hepatic Insulin Sensitivity. Diabetes, 2013, 62, 1102-1108.	0.6	152
27	Pineal clock gene oscillation is disturbed in Alzheimer's disease, due to functional disconnection from the "master clock― FASEB Journal, 2006, 20, 1874-1876.	0.5	151
28	Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. European Journal of Neuroscience, 2000, 12, 3146-3154.	2.6	150
29	The Daily Rhythm in Plasma Glucagon Concentrations in the Rat Is Modulated by the Biological Clock and by Feeding Behavior. Diabetes, 2003, 52, 1709-1715.	0.6	149
30	Thyroid Hormone Effects on Whole-Body Energy Homeostasis and Tissue-Specific Fatty Acid Uptake in Vivo. Endocrinology, 2009, 150, 5639-5648.	2.8	139
31	Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Research, 2000, 871, 50-56.	2.2	138
32	Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7789-7794.	7.1	138
33	Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications. Journal of Clinical Investigation, 2002, 110, 1243-1250.	8.2	137
34	A Major Role for Perifornical Orexin Neurons in the Control of Glucose Metabolism in Rats. Diabetes, 2009, 58, 1998-2005.	0.6	136
35	Circadian rhythms in mitochondrial respiration. Journal of Molecular Endocrinology, 2018, 60, R115-R130.	2.5	135
36	Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5966-5971.	7.1	132

#	Article	IF	CITATIONS
37	Hypothesis: Shifting the Equilibrium From Activity to Food Leads to Autonomic Unbalance and the Metabolic Syndrome. Diabetes, 2003, 52, 2652-2656.	0.6	124
38	Decrease of Endogenous Vasopressin Release Necessary for Expression of the Circadian Rise in Plasma Corticosterone: a Reverse Microdialysis Study. Journal of Neuroendocrinology, 1996, 8, 299-307.	2.6	121
39	Circadian Control of Insulin Secretion Is Independent of the Temporal Distribution of Feeding. Physiology and Behavior, 1998, 63, 553-560.	2.1	115
40	Hypothalamic control of energy metabolism via the autonomic nervous system. Annals of the New York Academy of Sciences, 2010, 1212, 114-129.	3.8	115
41	The Biological Clock: The Bodyguard of Temporal Homeostasis. Chronobiology International, 2004, 21, 1-25.	2.0	111
42	Effects of Nocturnal Light on (Clock) Gene Expression in Peripheral Organs: A Role for the Autonomic Innervation of the Liver. PLoS ONE, 2009, 4, e5650.	2.5	104
43	Dietary sugars, not lipids, drive hypothalamic inflammation. Molecular Metabolism, 2017, 6, 897-908.	6.5	104
44	MECHANISMS IN ENDOCRINOLOGY: Beyond the fixed setpoint of the hypothalamus–pituitary–thyroid axis. European Journal of Endocrinology, 2014, 171, R197-R208.	3.7	103
45	Intracerebroventricular Administration of Neuropeptide Y Induces Hepatic Insulin Resistance via Sympathetic Innervation. Diabetes, 2008, 57, 2304-2310.	0.6	101
46	Circadian disruption and SCN control of energy metabolism. FEBS Letters, 2011, 585, 1412-1426.	2.8	101
47	Novel environment induced inhibition of corticosterone secretion: physiological evidence for a suprachiasmatic nucleus mediated neuronal hypothalamo-adrenal cortex pathway. Brain Research, 1997, 758, 229-236.	2.2	97
48	Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate. PLoS ONE, 2008, 3, e3194.	2.5	97
49	Influence of the mesocortical dopaminergic system on activity, food hoarding, social-agonistic behavior, and spatial delayed alternation in male rats Behavioral Neuroscience, 1989, 103, 24-35.	1.2	94
50	Dim light at night disturbs the daily sleep-wake cycle in the rat. Scientific Reports, 2016, 6, 35662.	3.3	94
51	Direct vasoactive intestinal polypeptide-containing projection from the suprachiasmatic nucleus to spinal projecting hypothalamic paraventricular neurons. Brain Research, 1997, 748, 71-76.	2.2	92
52	Cardiovascular Control by the Suprachiasmatic Nucleus: Neural and Neuroendocrine Mechanisms in Human and Rat. Biological Chemistry, 2003, 384, 697-709.	2.5	92
53	The suprachiasmatic nucleus—paraventricular nucleus interactions: A bridge to the neuroendocrine and autonomic nervous system. Progress in Brain Research, 1999, 119, 365-382.	1.4	90
54	The hypothalamic clock and its control of glucose homeostasis. Trends in Endocrinology and Metabolism, 2010, 21, 402-410.	7.1	90

#	Article	IF	CITATIONS
55	Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity. Cell Reports, 2017, 20, 3034-3042.	6.4	89
56	Daily Rhythms in Metabolic Liver Enzymes and Plasma Glucose Require a Balance in the Autonomic Output to the Liver. Endocrinology, 2008, 149, 1914-1925.	2.8	88
57	The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Research, 2001, 901, 109-116.	2.2	87
58	Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. European Journal of Neuroscience, 2008, 27, 818-827.	2.6	79
59	GABA Receptors in the Region of the Dorsomedial Hypothalamus of Rats Are Implicated in the Control of Melatonin and Corticosterone Release. Neuroendocrinology, 1996, 63, 69-78.	2.5	76
60	Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia, 2017, 60, 1333-1343.	6.3	73
61	Hypothalamic Neuropeptide Y (NPY) Controls Hepatic VLDL-Triglyceride Secretion in Rats via the Sympathetic Nervous System. Diabetes, 2012, 61, 1043-1050.	0.6	72
62	Glutamatergic clock output stimulates melatonin synthesis at night. European Journal of Neuroscience, 2004, 19, 318-324.	2.6	69
63	Specific destruction of the serotonergic afferents to the suprachiasmatic nuclei prevents triazolam-induced phase advances of hamster activity rhythms. Behavioural Brain Research, 1994, 62, 21-28.	2.2	68
64	Rodent models to study the metabolic effects of shiftwork in humans. Frontiers in Pharmacology, 2015, 6, 50.	3.5	68
65	Novel neural pathways for metabolic effects of thyroid hormone. Trends in Endocrinology and Metabolism, 2010, 21, 230-236.	7.1	67
66	Daily Regulation of Hormone Profiles. Handbook of Experimental Pharmacology, 2013, , 185-226.	1.8	67
67	Effects of evening vs morning thyroxine ingestion on serum thyroid hormone profiles in hypothyroid patients. Clinical Endocrinology, 2006, 66, 061019025934001-???.	2.4	65
68	Differential Effects of Recombinant Adeno-Associated Virus-Mediated Neuropeptide Y Overexpression in the Hypothalamic Paraventricular Nucleus and Lateral Hypothalamus on Feeding Behavior. Journal of Neuroscience, 2007, 27, 14139-14146.	3.6	65
69	Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms. ENeuro, 2017, 4, ENEURO.0028-17.2017.	1.9	63
70	Central effects of thyronamines on glucose metabolism in rats. Journal of Endocrinology, 2009, 201, 377-386.	2.6	62
71	Nutrition and the circadian timing system. Progress in Brain Research, 2012, 199, 359-376.	1.4	61
72	Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E513-E520.	3.5	60

#	Article	IF	CITATIONS
73	Orexins, feeding, and energy balance. Progress in Brain Research, 2012, 198, 47-64.	1.4	60
74	Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity. Diabetes, 2012, 61, 339-345.	0.6	59
75	Diurnal rhythms in the white adipose tissue transcriptome are disturbed in obese individuals with type 2 diabetes compared with lean control individuals. Diabetologia, 2019, 62, 704-716.	6.3	57
76	Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Scientific Reports, 2016, 6, 29094.	3.3	56
77	High calorie diet triggers hypothalamic angiopathy. Molecular Metabolism, 2012, 1, 95-100.	6.5	55
78	Melanocortin 4 receptor distribution in the human hypothalamus. European Journal of Endocrinology, 2013, 168, 361-369.	3.7	54
79	Expression of Thyroid Hormone Transporters in the Human Hypothalamus. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E967-E971.	3.6	53
80	A circulating ghrelin mimetic attenuates lightâ€induced phase delay of mice and lightâ€induced Fos expression in the suprachiasmatic nucleus of rats. European Journal of Neuroscience, 2008, 27, 1965-1972.	2.6	52
81	Mammalian clock output mechanisms. Essays in Biochemistry, 2011, 49, 137-151.	4.7	52
82	Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats. Chronobiology International, 2017, 34, 1339-1353.	2.0	52
83	Neuropeptide Y Activity in the Nucleus Accumbens Modulates Feeding Behavior and Neuronal Activity. Biological Psychiatry, 2015, 77, 633-641.	1.3	51
84	Minireview: Circadian Control of Metabolism by the Suprachiasmatic Nuclei. Endocrinology, 2007, 148, 5635-5639.	2.8	50
85	Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats. European Journal of Neuroscience, 2016, 44, 2795-2806.	2.6	50
86	Control of the Estradiol-Induced Prolactin Surge by the Suprachiasmatic Nucleus. Endocrinology, 2001, 142, 2296-2302.	2.8	45
87	Restricted Daytime Feeding Modifies Suprachiasmatic Nucleus Vasopressin Release in Rats. Journal of Biological Rhythms, 1998, 13, 18-29.	2.6	44
88	Deficiency of leptin receptor in myeloid cells disrupts hypothalamic metabolic circuits and causes body weight increase. Molecular Metabolism, 2018, 7, 155-160.	6.5	43
89	Serotonin, a possible intermediate between disturbed circadian rhythms and metabolic disease. Neuroscience, 2015, 301, 155-167.	2.3	42
90	AgRP and NPY Expression in the Human Hypothalamic Infundibular Nucleus Correlate with Body Mass Index, Whereas Changes in αMSH Are Related to Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E925-E933.	3.6	41

#	Article	IF	CITATIONS
91	Deficiency of the Circadian Clock Gene Bmal1 Reduces Microglial Immunometabolism. Frontiers in Immunology, 2020, 11, 586399.	4.8	41
92	Microglia-specific knock-down of Bmal1 improves memory and protects mice from high fat diet-induced obesity. Molecular Psychiatry, 2021, 26, 6336-6349.	7.9	41
93	Individual Differences in Sleep Timing Relate to Melanopsin-Based Phototransduction in Healthy Adolescents and Young Adults. Sleep, 2016, 39, 1305-1310.	1.1	40
94	Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity, 2020, 28, S18-S28.	3.0	40
95	Chapter 27 Peptidergic transmitters of the suprachiasmatic nuclei and the control of circadian rhythmicity. Progress in Brain Research, 1992, 92, 321-333.	1.4	39
96	Interindividual differences in the pattern of melatonin secretion of the Wistar rat. Journal of Pineal Research, 1999, 27, 193-201.	7.4	39
97	Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks. Neurobiology of Sleep and Circadian Rhythms, 2018, 4, 24-33.	2.8	39
98	Thyroid hormone transporters and deiodinases in the developing human hypothalamus. European Journal of Endocrinology, 2012, 167, 379-386.	3.7	38
99	The Circadian Clock, Shift Work, and Tissue-Specific Insulin Resistance. Endocrinology, 2020, 161, .	2.8	38
100	Acute Peripheral but Not Central Administration of Olanzapine Induces Hyperglycemia Associated with Hepatic and Extra-Hepatic Insulin Resistance. PLoS ONE, 2012, 7, e43244.	2.5	37
101	The continued need for animals to advance brain research. Neuron, 2021, 109, 2374-2379.	8.1	36
102	Daily Variations in Type II Iodothyronine Deiodinase Activity in the Rat Brain as Controlled by the Biological Clock. Endocrinology, 2005, 146, 1418-1427.	2.8	35
103	Diet-Induced Obesity Disturbs Microglial Immunometabolism in a Time-of-Day Manner. Frontiers in Endocrinology, 2019, 10, 424.	3.5	35
104	Glucose and Fat Metabolism in Narcolepsy and the Effect of Sodium Oxybate: A Hyperinsulinemic-Euglycemic Clamp Study. Sleep, 2014, 37, 795-801.	1.1	34
105	Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes. Diabetologia, 2019, 62, 2088-2093.	6.3	34
106	Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats. Diabetes, 2010, 59, 1591-1600.	0.6	33
107	<i>Pmch</i> expression during early development is critical for normal energy homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E477-E488.	3.5	33
108	Neuropeptide <scp>Y</scp> and Leptin Sensitivity is Dependent on Diet Composition. Journal of Neuroendocrinology, 2014, 26, 377-385.	2.6	33

#	Article	IF	CITATIONS
109	TRH Neurons and Thyroid Hormone Coordinate the Hypothalamic Response to Cold. European Thyroid Journal, 2018, 7, 279-288.	2.4	33
110	The autonomic nervous system regulates postprandial hepatic lipid metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1089-E1096.	3.5	31
111	Acute Effects of Morning Light on Plasma Glucose and Triglycerides in Healthy Men and Men with Type 2 Diabetes. Journal of Biological Rhythms, 2017, 32, 130-142.	2.6	30
112	Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent. Journal of Neuroscience, 2017, 37, 4343-4358.	3.6	30
113	No triazolam-induced expression of Fos protein in raphe nuclei of the male Syrian hamster. Brain Research, 1993, 602, 14-20.	2.2	29
114	Leptin Administration Restores the Fasting-Induced Increase of Hepatic Type 3 Deiodinase Expression in Mice. Thyroid, 2012, 22, 192-199.	4.5	29
115	Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats. Journal of Endocrinology, 2015, 224, 25-35.	2.6	29
116	Effects of adrenalectomy on daily gene expression rhythms in the rat suprachiasmatic and paraventricular hypothalamic nuclei and in white adipose tissue. Chronobiology International, 2015, 32, 211-224.	2.0	29
117	Visualization of Active Glucocerebrosidase in Rodent Brain with High Spatial Resolution following In Situ Labeling with Fluorescent Activity Based Probes. PLoS ONE, 2015, 10, e0138107.	2.5	28
118	Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Research, 2017, 1671, 93-101.	2.2	28
119	The hypothalamic clock and its control of glucose homeostasis. Progress in Brain Research, 2006, 153, 283-307.	1.4	27
120	Breakfast replacement with a low-glycaemic response liquid formula in patients with type 2 diabetes: a randomised clinical trial. British Journal of Nutrition, 2014, 112, 504-512.	2.3	27
121	NFκB Signaling Is Essential for the Lipopolysaccharide-Induced Increase of Type 2 Deiodinase in Tanycytes. Endocrinology, 2014, 155, 2000-2008.	2.8	26
122	Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain. Chronobiology International, 2017, 34, 17-36.	2.0	26
123	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	3.9	26
124	Neonatal lesions of the ventral tegmental area affect monoaminergic responses to stress in the medial prefrontal cortex and other dopamine projection areas in adulthood. Brain Research, 1992, 596, 169-182.	2.2	25
125	Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 487-503.	4.7	25
126	Differential Modulation of Arcuate Nucleus and Mesolimbic Gene Expression Levels by Central Leptin in Rats on Short-Term High-Fat High-Sugar Diet. PLoS ONE, 2014, 9, e87729.	2.5	24

#	Article	IF	CITATIONS
127	Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 673-684.	4.7	24
128	The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver. Molecular and Cellular Endocrinology, 2016, 422, 125-131.	3.2	24
129	Hypothalamic effects of thyroid hormone. Molecular and Cellular Endocrinology, 2017, 458, 143-148.	3.2	24
130	Oxytocin innervation of spinal preganglionic neurons projecting to the superior cervical ganglion in the rat. Cell and Tissue Research, 1997, 287, 481-486.	2.9	23
131	Temporal organization of the 24-h corticosterone rhythm in the diurnal murid rodent Arvicanthis ansorgei Thomas 1910. Brain Research, 2004, 995, 197-204.	2.2	23
132	"Diabetes of the elderly―and type 2 diabetes in younger patients: Possible role of the biological clock. Experimental Gerontology, 2007, 42, 22-27.	2.8	23
133	Timing of fat and liquid sugar intake alters substrate oxidation and food efficiency in male Wistar rats. Chronobiology International, 2015, 32, 289-298.	2.0	23
134	Sleep restriction acutely impairs glucose tolerance in rats. Physiological Reports, 2016, 4, e12839.	1.7	23
135	Effects of 6â€mealsâ€aâ€day feeding and 6â€mealsâ€aâ€day feeding combined with adrenalectomy on daily gen expression rhythms in rat epididymal white adipose tissue. Genes To Cells, 2016, 21, 6-24.	e _{1.2}	23
136	Transhepatic bile acid kinetics in pigs and humans. Clinical Nutrition, 2018, 37, 1406-1414.	5.0	23
137	Circadian rhythms in white adipose tissue. Progress in Brain Research, 2012, 199, 183-201.	1.4	22
138	The Effect of Rev-erbα Agonist SR9011 on the Immune Response and Cell Metabolism of Microglia. Frontiers in Immunology, 2020, 11, 550145.	4.8	22
139	Time-Restricted Feeding Improves Glucose Tolerance in Rats, but Only When in Line With the Circadian Timing System. Frontiers in Endocrinology, 2019, 10, 554.	3.5	21
140	Central nervous determination of food storage—a daily switch from conservation to expenditure: implications for the metabolic syndrome. European Journal of Pharmacology, 2003, 480, 51-65.	3.5	20
141	Suprachiasmatic Nucleus and Autonomic Nervous System Influences on Awakening From Sleep. International Review of Neurobiology, 2010, 93, 91-107.	2.0	20
142	Intrahypothalamic Estradiol Regulates Glucose Metabolism via the Sympathetic Nervous System in Female Rats. Diabetes, 2013, 62, 435-443.	0.6	20
143	Hormones and the Autonomic Nervous System are Involved in Suprachiasmatic Nucleus Modulation of Glucose Homeostasis. Current Diabetes Reviews, 2006, 2, 213-226.	1.3	19
144	Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats. Frontiers in Neuroscience, 2013, 7, 226.	2.8	19

#	Article	IF	CITATIONS
145	Fasting-Induced Changes in Hepatic Thyroid Hormone Metabolism in Male Rats Are Independent of Autonomic Nervous Input to the Liver. Endocrinology, 2014, 155, 5033-5041.	2.8	19
146	Hepatic denervation and dyslipidemia in obese Zucker (fa/fa) rats. International Journal of Obesity, 2015, 39, 1655-1658.	3.4	19
147	Differential Involvement of the Suprachiasmatic Nucleus in Lipopolysaccharide-Induced Plasma Glucose and Corticosterone Responses. Chronobiology International, 2012, 29, 835-849.	2.0	17
148	Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation. Molecular Metabolism, 2015, 4, 210-221.	6.5	17
149	Nutrition in the spotlight: metabolic effects of environmental light. Proceedings of the Nutrition Society, 2016, 75, 451-463.	1.0	17
150	Daily Gene Expression Rhythms in Rat White Adipose Tissue Do Not Differ Between Subcutaneous and Intra-Abdominal Depots. Frontiers in Endocrinology, 2018, 9, 206.	3.5	17
151	Kisspeptin and <scp>RFRP</scp> 3 modulate body mass in <i>Phodopus sungorus</i> via two different neuroendocrine pathways. Journal of Neuroendocrinology, 2019, 31, e12710.	2.6	17
152	Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats. Endocrinology, 2016, 157, 3070-3085.	2.8	16
153	Chronic infusion of taurolithocholate into the brain increases fat oxidation in mice. Journal of Endocrinology, 2018, 236, 85-97.	2.6	16
154	Expression of the clock gene <i>Revâ€erbα</i> in the brain controls the circadian organisation of food intake and locomotor activity, but not daily variations of energy metabolism. Journal of Neuroendocrinology, 2018, 30, e12557.	2.6	16
155	Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent <i>Arvicanthis ansorgei</i> in a sexâ€dependent manner. Physiological Reports, 2019, 7, e14257.	1.7	16
156	Autonomic Regulation of Hepatic Glucose Production. , 2015, 5, 147-165.		15
157	Suprachiasmatic Nucleus Neuropeptides and Their Control of Endogenous Glucose Production. Journal of Neuroendocrinology, 2016, 28, .	2.6	15
158	The Leeds food preference questionnaire after mild sleep restriction — A small feasibility study. Physiology and Behavior, 2016, 154, 28-33.	2.1	15
159	Effects of intravenous thyrotropin-releasing hormone on 18F-fluorodeoxyglucose uptake in human brown adipose tissue: a randomized controlled trial. European Journal of Endocrinology, 2018, 179, 31-38.	3.7	15
160	An Ultradian Feeding Schedule in Rats Affects Metabolic Gene Expression in Liver, Brown Adipose Tissue and Skeletal Muscle with Only Mild Effects on Circadian Clocks. International Journal of Molecular Sciences, 2018, 19, 3171.	4.1	15
161	A Free-Choice High-Fat High-Sugar Diet Alters Day–Night Per2 Gene Expression in Reward-Related Brain Areas in Rats. Frontiers in Endocrinology, 2018, 9, 154.	3.5	15
162	The impact of antidiabetic treatment on human hypothalamic infundibular neurons and microglia. JCI Insight, 2020, 5, .	5.0	15

#	Article	IF	CITATIONS
163	Chapter 5 Central vasopressin systems and steroid hormones. Progress in Brain Research, 2002, 139, 57-73.	1.4	14
164	Hormonal Control of Metabolism by the Hypothalamus-Autonomic Nervous System-Liver Axis. Frontiers of Hormone Research, 2014, 42, 1-28.	1.0	14
165	Infusion of fluoxetine, a serotonin reuptake inhibitor, in the shell region of the nucleus accumbens increases blood glucose concentrations in rats. Neuroscience Letters, 2017, 637, 85-90.	2.1	13
166	Regulation of Brain DNA Methylation Factors and of the Orexinergic System by Cocaine and Food Self-Administration. Molecular Neurobiology, 2019, 56, 5315-5331.	4.0	13
167	Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neuroscience and Biobehavioral Reviews, 2021, 123, 48-60.	6.1	13
168	Central administration of an orexin receptor 1 antagonist prevents the stimulatory effect of Olanzapine on endogenous glucose production. Brain Research, 2013, 1527, 238-245.	2.2	12
169	Regulation of type 3 deiodinase in rodent liver and adipose tissue during fasting. Endocrine Connections, 2020, 9, 552-562.	1.9	12
170	Disrupted Circadian Control of Hormonal Rhythms and Anticipatory Thirst by Dim Light at Night. Neuroendocrinology, 2022, 112, 1116-1128.	2.5	12
171	Brain areas and pathways in the regulation of glucose metabolism. BioFactors, 2013, 39, 505-513.	5.4	11
172	Chronic treatment with olanzapine increases adiposity by changing fuel substrate and causes desensitization of the acute metabolic side effects. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 185-195.	3.0	11
173	Effects of Chronic Estrogen Administration in the Ventromedial Nucleus of the Hypothalamus (VMH) on Fat and Bone Metabolism in Ovariectomized Rats. Endocrinology, 2016, 157, 4930-4942.	2.8	11
174	Biphasic Glucocorticoid Rhythm in One-Month-Old Infants: Reflection of a Developing HPA-Axis?. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e544-e554.	3.6	11
175	Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 45-63.	1.8	11
176	Role of central kisspeptin and RFRPâ€3 in energy metabolism in the male Wistar rat. Journal of Neuroendocrinology, 2021, 33, e12973.	2.6	11
177	Timeâ€restricted feeding during the inactive phase abolishes the daily rhythm in mitochondrial respiration in rat skeletal muscle. FASEB Journal, 2022, 36, e22133.	0.5	11
178	Differential effects of hypercaloric choice diets on insulin sensitivity in rats. Journal of Endocrinology, 2017, 232, 49-57.	2.6	10
179	Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold. Frontiers in Endocrinology, 2018, 9, 199.	3.5	10
180	Administration of Thyrotropin-Releasing Hormone in the Hypothalamic Paraventricular Nucleus of Male Rats Mimics the Metabolic Cold Defense Response. Neuroendocrinology, 2018, 107, 267-279.	2.5	10

#	Article	IF	CITATIONS
181	Altered Circadian Rhythm of Melatonin Concentrations in Hypocretin-Deficient Men. Chronobiology International, 2012, 29, 356-362.	2.0	9
182	A model for chronic, intrahypothalamic thyroid hormone administration in rats. Journal of Endocrinology, 2016, 229, 37-45.	2.6	9
183	Metabolic Effects of Chronic T3Administration in the Hypothalamic Paraventricular and Ventromedial Nucleus in Male Rats. Endocrinology, 2016, 157, 4076-4085.	2.8	9
184	Circadian and endocrine rhythms. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 443.	4.7	9
185	Synergistic Effect of Feeding Time and Diet on Hepatic Steatosis and Gene Expression in Male Wistar Rats. Obesity, 2020, 28, S81-S92.	3.0	9
186	Afterâ€Effects of Timeâ€Restricted Feeding on Wholeâ€Body Metabolism and Gene Expression in Four Different Peripheral Tissues. Obesity, 2020, 28, S68-S80.	3.0	9
187	Control of the Estradiol-Induced Prolactin Surge by the Suprachiasmatic Nucleus. Endocrinology, 2001, 142, 2296-2302.	2.8	9
188	Daily and Estral Regulation of RFRP-3 Neurons in the Female Mice. Journal of Circadian Rhythms, 2021, 19, 4.	1.3	8
189	Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes, 2021, 12, 1263.	2.4	8
190	Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats. PLoS ONE, 2017, 12, e0185520.	2.5	7
191	Functional changes of the SCN in spontaneous hypertension but not after the induction of hypertension. Chronobiology International, 2018, 35, 1221-1235.	2.0	7
192	Neuropeptide changes in the suprachiasmatic nucleus are associated with the development of hypertension. Chronobiology International, 2019, 36, 1072-1087.	2.0	7
193	Metabolic Effects of Light at Night are Time―and Wavelengthâ€Dependent in Rats. Obesity, 2020, 28, S114-S125.	3.0	7
194	Mapping of Microglial Brain Region, Sex and Age Heterogeneity in Obesity. International Journal of Molecular Sciences, 2021, 22, 3141.	4.1	7
195	Preface. Progress in Brain Research, 2012, 199, xi-xii.	1.4	6
196	Effects of Light-at-Night on the Rat Liver – A Role for the Autonomic Nervous System. Frontiers in Neuroscience, 2019, 13, 647.	2.8	6
197	Dopamine D1 receptor signalling in the lateral shell of the nucleus accumbens controls dietary fat intake in male rats. Appetite, 2021, 167, 105597.	3.7	6
198	Energy Homeostasis and Body Weight before and after Cessation of Block and Replacement Therapy in Euthyroid Patients with Graves' Disease. International Journal of Endocrinology, 2011, 2011, 1-7.	1.5	5

#	Article	IF	CITATIONS
199	Effects of central gastrin-releasing peptide on glucose metabolism. Brain Research, 2015, 1625, 135-141.	2.2	5
200	Editorial: Circadian Rhythms and Metabolism. Frontiers in Endocrinology, 2017, 8, 201.	3.5	5
201	The Iminosugar AMP-DNM Improves Satiety and Activates Brown Adipose Tissue Through GLP1. Diabetes, 2019, 68, 2223-2234.	0.6	5
202	RFRP3 increases food intake in a sexâ€dependent manner in the seasonal hamster Phodopus sungorus. Journal of Neuroendocrinology, 2020, 32, e12845.	2.6	5
203	Autonomic MC Sets the Metabolic Tone. Cell Metabolism, 2011, 13, 121-123.	16.2	4
204	Olanzapine-induced changes in glucose metabolism are independent of the melanin-concentrating hormone system. Psychoneuroendocrinology, 2013, 38, 2640-2646.	2.7	4
205	The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats. Chronobiology International, 2018, 35, 885-895.	2.0	4
206	Absence of diurnal variation in visceromotor response to colorectal distention in normal Long Evans rats. F1000Research, 2016, 5, 98.	1.6	4
207	Loss of Microglial Insulin Receptor Leads to Sex-Dependent Metabolic Disorders in Obese Mice. International Journal of Molecular Sciences, 2022, 23, 2933.	4.1	4
208	Restoring the autonomic balance to reduce liver steatosis. Journal of Physiology, 2019, 597, 4683-4684.	2.9	3
209	Activation of nucleus accumbens μâ€opioid receptors enhances the response to a glycaemic challenge. Journal of Neuroendocrinology, 2021, 33, e13036.	2.6	3
210	Sleep and Food Choice in a Dutch Student Population. Journal of Circadian Rhythms, 2015, 13, 6.	1.3	3
211	Suppressor of cytokine signaling 3 in the human hypothalamus. Peptides, 2012, 35, 139-142.	2.4	2
212	Inhibitory Effect of the Melanocortin Receptor Agonist Melanotan-II (MTII) on Feeding Depends on Dietary Fat Content and not Obesity in Rats on Free-Choice Diets. Frontiers in Behavioral Neuroscience, 2015, 9, 358.	2.0	2
213	Circadian Organization of the Autonomic Nervous System. , 2000, , 117-157.		2
214	Age-dependent change of RFRP-3 neuron numbers and innervation in female mice. Neuropeptides, 2022, 92, 102224.	2.2	2
215	Increased Risk of Diabetes due to Obesity: Does Chronodisruption Play a Role?. , 2013, , 111-131.		1
216	Social Jet-Lag in Tertiary Students Following A Modern Curriculum with Few Time-Tabled Contact Hours: A Pilot Study. Clocks & Sleep, 2019, 1, 306-318.	2.0	1

#	Article	IF	CITATIONS
217	Thermal lesions of the SCN do not abolish all gene expression rhythms in rat white adipose tissue, NAMPT remains rhythmic. Chronobiology International, 2021, 38, 1354-1366.	2.0	1
218	Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes, 2021, 12, 1195.	2.4	1
219	Behavioral Circadian Timing System Disruptors and Incident Type 2 Diabetes in a Nonshift Working Multiethnic Population. Obesity, 2020, 28, S55-S62.	3.0	1
220	Minor Changes in Daily Rhythms Induced by a Skeleton Photoperiod Are Associated with Increased Adiposity and Glucose Intolerance. Advanced Biology, 0, , 2200116.	2.5	1
221	Biological Clock Control of Glucose Metabolism. , 2006, , 87-117.		0
222	PS1 - 5. Deep brain stimulation in the nucleus accumbens alters glucose metabolism in rats. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 93-94.	0.0	0
223	PS16 - 79. The autonomic nervous system and lipid metabolism during feeding. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 145-145.	0.0	0
224	PS16 - 79. Fluoxetine dialysis in the nucleus accumbens shell in rats increases blood glucose concentration. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 154-155.	0.0	0
225	Preface. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 633-634.	4.7	0
226	Preface – Part 2: Circadian and endocrine rhythms. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 519.	4.7	0
227	Muscle Clocks and Diabetes. Obesity, 2020, 28, S5.	3.0	0
228	Early changes of immunoreactivity to orexin in hypothalamus and to RFamide peptides in brainstem during the development of hypertension. Neuroscience Letters, 2021, 762, 136144.	2.1	0