Boon S Ooi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2206133/boon-s-ooi-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

301 6,937 45 71 g-index

402 8,803 5.5 6.11 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
301	A flexible capacitive photoreceptor for the biomimetic retina <i>Light: Science and Applications</i> , 2022 , 11, 3	16.7	8
300	Efficient channel modeling of structured light in turbulence using generative adversarial networks <i>Optics Express</i> , 2022 , 30, 7238-7252	3.3	2
299	Self-powered weather station for remote areas and difficult-access locations <i>Optics Express</i> , 2022 , 30, 2668-2679	3.3	2
298	Real-time Optical-Wireless Video Surveillance System for High Visual-fidelity Underwater Monitoring. <i>IEEE Photonics Journal</i> , 2022 , 1-1	1.8	5
297	All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication <i>Optics Express</i> , 2022 , 30, 9823-9840	3.3	2
296	Boosted ultraviolet photodetection of AlGaN quantum-disk nanowires via rational surface passivation. <i>Journal Physics D: Applied Physics</i> , 2022 , 55, 125101	3	2
295	Toward Automatic Subsea Operations Using Real-Time Underwater Optical Wireless Sensor Networks. <i>IEEE Photonics Journal</i> , 2022 , 14, 1-8	1.8	3
294	Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence <i>Optics Express</i> , 2022 , 30, 53-69	3.3	7
293	Simultaneous Lightwave and Power Transfer for Internet of Things Devices. <i>Energies</i> , 2022 , 15, 2814	3.1	O
292	Lattice Orientation Heredity in the Transformation of 2D Epitaxial Films. Advanced Materials, 2021, e21	10 <u>5</u> 490	1
291	Silicon-integrated monocrystalline oxidelitride heterostructures for deep-ultraviolet optoelectronics. <i>Optical Materials Express</i> , 2021 , 11, 4130	2.6	O
290	. IEEE Open Journal of the Communications Society, 2021 , 2, 2597-2615	6.7	3
289	A Review of Distributed Fiberoptic Sensing in the Oil and Gas Industry. <i>Journal of Lightwave Technology</i> , 2021 , 1-1	4	6
288	The Impact of Vertical Salinity Gradient on Non-Line-of-Sight Underwater Optical Wireless Communication. <i>IEEE Photonics Journal</i> , 2021 , 1-1	1.8	5
287	Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling. <i>Advanced Science</i> , 2021 , 8, e2102502	13.6	9
286	Dual-wavelength luminescent fibers receiver for wide field-of-view, Gb/s underwater optical wireless communication. <i>Optics Express</i> , 2021 , 29, 38014-38026	3.3	9
285	Engineering Band-Type Alignment in CsPbBr Perovskite-Based Artificial Multiple Quantum Wells. <i>Advanced Materials</i> , 2021 , 33, e2005166	24	1

(2021-2021)

284	InGaN-based nanowires development for energy harvesting and conversion applications. <i>Journal of Applied Physics</i> , 2021 , 129, 121103	2.5	3
283	Toward Large-Scale GaO Membranes via Quasi-Van Der Waals Epitaxy on Epitaxial Graphene Layers. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 13410-13418	9.5	3
282	Colloidal PbS Quantum Dots for Visible-to-Near-Infrared Optical Internet of Things. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-11	1.8	2
281	Wide-field-of-view optical detectors using fused fiber-optic tapers. <i>Optics Letters</i> , 2021 , 46, 1916-1919	3	9
280	Giant clam inspired high-speed photo-conversion for ultraviolet optical wireless communication. <i>Optical Materials Express</i> , 2021 , 11, 1515	2.6	2
279	Heteroepitaxial EGa2O3 on Conductive Ceramic Templates: Toward Ultrahigh Gain Deep-Ultraviolet Photodetection. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100142	6.8	3
278	Sustained Solar-Powered Electrocatalytic H2 Production by Seawater Splitting Using Two-Dimensional Vanadium Disulfide. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 8572-8580	8.3	2
277	Reduction of the beam pointing error for improved free-space optical communication link performance. <i>IFAC Journal of Systems and Control</i> , 2021 , 16, 100154	0.9	0
276	Highly Uniform, Self-Assembled AlGaN Nanowires for Self-Powered Solar-Blind Photodetector with Fast-Response Speed and High Responsivity. <i>Advanced Optical Materials</i> , 2021 , 9, 2000893	8.1	36
275	Improved H2 detection performance of GaN sensor with Pt/Sulfide treatment of porous active layer prepared by metal electroless etching. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 4614-4	625	5
274	Pt/AlGaN Nanoarchitecture: Toward High Responsivity, Self-Powered Ultraviolet-Sensitive Photodetection. <i>Nano Letters</i> , 2021 , 21, 120-129	11.5	55
273	Group-III-nitride and halide-perovskite semiconductor gain media for amplified spontaneous emission and lasing applications. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 143001	3	7
272	Domain-Size-Dependent Residual Stress Governs the Phase-Transition and Photoluminescence Behavior of Methylammonium Lead Iodide. <i>Advanced Functional Materials</i> , 2021 , 31, 2008088	15.6	3
271	Single-Port Superluminescent-Diode Gain-Chip for Tunable Single-Wavelength and Dual-Wavelength Blue-Laser. <i>IEEE Photonics Journal</i> , 2021 , 13, 1-11	1.8	O
270	Hybrid concentrated radiative cooling and solar heating in a single system. <i>Cell Reports Physical Science</i> , 2021 , 2, 100338	6.1	10
269	Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. <i>Sensors</i> , 2021 , 21,	3.8	5
268	Vapor condensation with daytime radiative cooling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	19
267	Heteroepitaxial EGa2O3 on Conductive Ceramic Templates: Toward Ultrahigh Gain Deep-Ultraviolet Photodetection (Adv. Mater. Technol. 9/2021). <i>Advanced Materials Technologies</i> , 2021 , 6, 2170052	6.8	

266	A CNN-Based Structured Light Communication Scheme for Internet of Underwater Things Applications. <i>IEEE Internet of Things Journal</i> , 2020 , 7, 10038-10047	10.7	9
265	7.4-Gbit/s Visible-Light Communication Utilizing Wavelength-Selective Semipolar Micro-Photodetector. <i>IEEE Photonics Technology Letters</i> , 2020 , 1-1	2.2	7
264	Optical Properties and First-Principles Study of CHNHPbBr Perovskite Structures. <i>ACS Omega</i> , 2020 , 5, 12313-12319	3.9	4
263	Aqua-Fi: Delivering Internet Underwater Using Wireless Optical Networks. <i>IEEE Communications Magazine</i> , 2020 , 58, 84-89	9.1	12
262	Piezotronic AlGaN nanowire Schottky junctions grown on a metal substrate. <i>AIP Advances</i> , 2020 , 10, 05	5 0 .1 5 4	4
261	Iridocytes Mediate Photonic Cooperation Between Giant Clams (Tridacninae) and Their Photosynthetic Symbionts. <i>Frontiers in Marine Science</i> , 2020 , 7,	4.5	17
260	Early detection of red palm weevil using distributed optical sensor. <i>Scientific Reports</i> , 2020 , 10, 3155	4.9	17
259	Toward Self-Powered Internet of Underwater Things Devices. <i>IEEE Communications Magazine</i> , 2020 , 58, 68-73	9.1	24
258	Blue Laser Diode System With an Enhanced Wavelength Tuning Range. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-10	1.8	2
257	THz behavior originates from different arrangements of coalescent GaN nanorods grown on Si (111) and Si (100) substrates. <i>Applied Surface Science</i> , 2020 , 522, 146422	6.7	3
256	3.8-Gbit/s visible light communication (VLC) based on 443-nm superluminescent diode and bit-loading discrete-multiple-tone (DMT) modulation scheme 2020 ,		2
255	Roadmap to free space optics. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A18	4 1.7	57
254	Identifying structured light modes in a desert environment using machine learning algorithms. <i>Optics Express</i> , 2020 , 28, 9753-9763	3.3	12
253	Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception. <i>Optics Express</i> , 2020 , 28, 9111-9122	3.3	16
252	2.4-Gbps Ultraviolet-C Solar-Blind Communication Based on Probabilistically Shaped DMT Modulation 2020 ,		3
251	480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication. <i>Optics Letters</i> , 2020 , 45, 742-745	3	15
250	Prism-based tunable InGaN/GaN self-injection locked blue laser diode system: study of temperature, injection ratio, and stability. <i>Journal of Nanophotonics</i> , 2020 , 14, 1	1.1	1
249	Demonstration of a low-complexity memory-polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. <i>Opto-Electronic Advances</i> , 2020 , 3, 200009-20	9699	3

248	Sensing within the OTDR dead-zone using a two-mode fiber. Optics Letters, 2020, 45, 2969-2972	3	2
247	Nanogap Structures: Large-Scale Sub-1-nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing (Advanced Optical Materials 24/2020). <i>Advanced Optical Materials</i> , 2020 , 8, 2070095	8.1	
246	A Unified Statistical Model for Atmospheric Turbulence-Induced Fading in Orbital Angular Momentum Multiplexed FSO Systems. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 888-900	9.6	12
245	Simultaneous Distributed Acoustic and Temperature Sensing Using a Multimode Fiber. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2020 , 26, 1-7	3.8	7
244	Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. <i>Optics Communications</i> , 2020 , 461, 125264	2	19
243	Semipolar (\$20overline{21}\$) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication. <i>Applied Physics Express</i> , 2020 , 13, 014001	2.4	20
242	TimeEnergy Quantum Uncertainty: Quantifying the Effectiveness of Surface Defect Passivation Protocols for Low-Dimensional Semiconductors. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 409-418	4	2
241	A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. <i>Journal of Lightwave Technology</i> , 2020 , 38, 421-431	4	41
240	A Review of Using Few-Mode Fibers for Optical Sensing. <i>IEEE Access</i> , 2020 , 8, 179592-179605	3.5	7
239	Survey of energy-autonomous solar cell receivers for satellitelirgroundlicean optical wireless communication. <i>Progress in Quantum Electronics</i> , 2020 , 74, 100300	9.1	11
238	Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100). <i>AIP Advances</i> , 2020 , 10, 065318	1.5	2
237	Titanium Carbide MXene Nucleation Layer for Epitaxial Growth of High-Quality GaN Nanowires on Amorphous Substrates. <i>ACS Nano</i> , 2020 , 14, 2202-2211	16.7	5
236	Functionalization of Magnetic Nanowires for Active Targeting and Enhanced Cell-Killing Efficacy <i>ACS Applied Bio Materials</i> , 2020 , 3, 4789-4797	4.1	6
235	Single-Crystalline All-Oxide IIIHeterostructures for Deep-Ultraviolet Photodetection. <i>ACS Applied Materials & Deep Materials</i>	9.5	8
234	A highly sensitive, large area, and self-powered UV photodetector based on coalesced gallium nitride nanorods/graphene/silicon (111) heterostructure. <i>Applied Physics Letters</i> , 2020 , 117, 191103	3.4	12
233	Underwater wireless optical communications: Opportunity, challenges and future prospects commentary on R ecent progress in and perspectives of underwater wireless optical communication <i>Progress in Quantum Electronics</i> , 2020 , 73, 100275	9.1	3
232	Large-Scale Sub-1-nm Random Gaps Approaching the Quantum Upper Limit for Quantitative Chemical Sensing. <i>Advanced Optical Materials</i> , 2020 , 8, 2001634	8.1	1
231	Diffused-Line-of-Sight Communication for Mobile and Fixed Underwater Nodes. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-13	1.8	5

230	Crosstalk Suppression in Structured Light Free-Space Optical Communication. <i>IEEE Open Journal of the Communications Society</i> , 2020 , 1, 1623-1631	6.7	3
229	Quantifying the Transverse-Electric-Dominant 260 nm Emission from Molecular Beam Epitaxy-Grown GaN-Quantum-Disks Embedded in AlN Nanowires: A Comprehensive Optical and Morphological Characterization. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2020 , 12, 41649-41658	9.5	3
228	AquaE-lite Hybrid-Solar-Cell Receiver-Modality for Energy-Autonomous Terrestrial and Underwater Internet-of-Things. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-13	1.8	14
227	Field Demonstrations of Wide-Beam Optical Communications Through WaterAir Interface. <i>IEEE Access</i> , 2020 , 8, 160480-160489	3.5	18
226	Nanoporous GaN/n-type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 3295-3303	20.1	6
225	Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. <i>Nano Energy</i> , 2020 , 73, 104801	17.1	39
224	Tunable Violet Laser Diode System for Optical Wireless Communication. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 546-549	2.2	5
223	Deep-Ultraviolet Photodetection Using Single-Crystalline EGaO/NiO Heterojunctions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 35095-35104	9.5	48
222	Near-Infrared OAM Communication Using 3D-Printed Microscale Spiral Phase Plates. <i>IEEE Communications Magazine</i> , 2019 , 57, 65-69	9.1	13
221	Direct Growth of Single Crystalline GaN Nanowires on Indium Tin Oxide-Coated Silica. <i>Nanoscale Research Letters</i> , 2019 , 14, 45	5	3
220	Extraordinary Carrier Diffusion on CdTe Surfaces Uncovered by 4D Electron Microscopy. <i>CheM</i> , 2019 , 5, 706-718	16.2	14
219	Twofold Porosity and Surface Functionalization Effect on Pt-Porous GaN for High-Performance H-Gas Sensors at Room Temperature. <i>ACS Omega</i> , 2019 , 4, 1678-1684	3.9	8
218	Group-III-Nitride Superluminescent Diodes for Solid-State Lighting and High-Speed Visible Light Communications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25, 1-10	3.8	25
217	Communicating Using Spatial Mode Multiplexing: Potentials, Challenges, and Perspectives. <i>IEEE Communications Surveys and Tutorials</i> , 2019 , 21, 3175-3203	37.1	83
216	Narrow-line InGaN/GaN green laser diode with high-order distributed-feedback surface grating. <i>Applied Physics Express</i> , 2019 , 12, 042007	2.4	16
215	Perovskite-Based Artificial Multiple Quantum Wells. <i>Nano Letters</i> , 2019 , 19, 3535-3542	11.5	17
214	A polydimethylsiloxane-coated metal structure for all-day radiative cooling. <i>Nature Sustainability</i> , 2019 , 2, 718-724	22.1	162
213	OAM Mode Selection and Spacellime Coding for Atmospheric Turbulence Mitigation in FSO Communication. <i>IEEE Access</i> , 2019 , 7, 88049-88057	3.5	15

212	. Journal of Lightwave Technology, 2019 , 37, 5083-5090	4	14
211	. IEEE Journal of Selected Topics in Quantum Electronics, 2019 , 25, 1-7	3.8	4
210	Catalyst-Free Vertical ZnO-Nanotube Array Grown on p-GaN for UV-Light-Emitting Devices. <i>ACS Applied Materials & Devices</i> , 2019 , 11, 27989-27996	9.5	13
209	High-speed colour-converting photodetector with all-inorganic CsPbBr perovskite nanocrystals for ultraviolet light communication. <i>Light: Science and Applications</i> , 2019 , 8, 94	16.7	125
208	Growth of Ordered Iron Oxide Nanowires for Photo-electrochemical Water Oxidation. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8473-8480	6.1	4
207	Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. <i>ACS Applied Materials & Drug Pages</i> , 11, 43976-43988	9.5	19
206	Investigating the Performance of a Few-Mode Fiber for Distributed Acoustic Sensing. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-10	1.8	5
205	Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate. <i>Advanced Functional Materials</i> , 2019 , 29, 1905445	15.6	85
204	Tunable Dual-Wavelength Self-injection Locked InGaN/GaN Green Laser Diode. <i>IEEE Access</i> , 2019 , 7, 14	1333254-1	43330
203	Spectrally Resolved Characterization of Thermally Induced Underwater Turbulence Using a Broadband White-Light Interrogator. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	4
202	Modeling and Experimental Study of The Vibration Effects in Urban Free-Space Optical Communication Systems. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-13	1.8	2
201	Laser-based visible light communications and underwater wireless optical communications: a device perspective 2019 ,		8
200	Functional integrity and stable high-temperature operation of planarized ultraviolet-A AlxGa1N/AlyGa1N multiple-quantum-disk nanowire LEDs with charge-conduction promoting interlayer 2019 ,		2
199	Accelerating vapor condensation with daytime radiative cooling 2019,		8
198	Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. <i>Applied Optics</i> , 2019 , 58, 4933-4938	1.7	14
197	All-day radiative cooling using beam-controlled architectures 2019,		1
196	Producing OAM Information Carriers using Micro-structured Spiral Phase Plates 2019,		1
195	Electrical characterization of solar-blind deep-ultraviolet (Al0.28Ga0.72)2O3 Schottky photodetectors grown on silicon by pulsed laser deposition 2019 ,		2

194	Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions. <i>Optics Express</i> , 2019 , 27, A81-A91	3.3	12
193	Gallium Phosphide photoanode coated with TiO and CoO for stable photoelectrochemical water oxidation. <i>Optics Express</i> , 2019 , 27, A364-A371	3.3	12
192	On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter. <i>Optics Express</i> , 2019 , 27, 19635-19649	3.3	26
191	Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. <i>Optics Express</i> , 2019 , 27, 30450-30461	3.3	21
190	Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. <i>Optics Express</i> , 2019 , 27, 34542-34551	3.3	17
189	Towards Early Detection of Red Palm Weevil Using Optical Fiber Distributed Acoustic Sensor 2019 ,		3
188	Enhanced electro-optic performance of surface-treated nanowires: origin and mechanism of nanoscale current injection for reliable ultraviolet light-emitting diodes. <i>Optical Materials Express</i> , 2019 , 9, 203	2.6	10
187	The effect of turbulence on NLOS underwater wireless optical communication channels [Invited]. <i>Chinese Optics Letters</i> , 2019 , 17, 100013	2.2	11
186	Visible diode lasers for high bitrate underwater wireless optical communications 2019,		1
185	Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI White Lighting and High-Speed VLC 2019 ,		1
184	Study on laser-based white light sources 2019 ,		2
183	Tunable Twisting Motion of Organic Linkers via Concentration and Hydrogen-Bond Formation. Journal of Physical Chemistry C, 2019 , 123, 5900-5906	3.8	10
182	On the Reciprocity of Underwater Turbulent Channels. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	7
181	Impact of Wavelength on the Path-loss of Turbid Underwater Communication Systems 2019,		1
180	Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group IIIBitrides, IIIBxides, and two-dimensional materials. <i>Journal of Semiconductors</i> , 2019 , 40, 121801	2.3	17
179	High-Speed Ultraviolet-C Photodetector Based on Frequency Down-Converting CsPbBr3 Perovskite Nanocrystals on Silicon Platform 2019 ,		1
178	Unified Statistical Channel Model for Turbulence-Induced Fading in Underwater Wireless Optical Communication Systems. <i>IEEE Transactions on Communications</i> , 2019 , 67, 2893-2907	6.9	68
177	Ultraviolet-A LED Based on Quantum-Disks-In-AlGaN-Nanowires Dptimization and Device Reliability. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-11	1.8	8

176	Multi-wavelength emission from a single InGaN/GaN nanorod analyzed by cathodoluminescence hyperspectral imaging. <i>Scientific Reports</i> , 2018 , 8, 1742	4.9	6
175	Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. <i>ACS Energy Letters</i> , 2018 , 3, 476-481	20.1	11
174	Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes. <i>ACS Photonics</i> , 2018 , 5, 964-970	6.3	54
173	Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6922-6930	13	30
172	Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes. <i>Journal of Applied Physics</i> , 2018 , 123, 10576	0 2 5	18
171	Visible light communication using DC-biased optical filter bank multi-carrier modulation 2018,		9
170	Worst-case residual clipping noise power model for bit loading in LACO-OFDM 2018 ,		6
169	High Reflectivity YDH/SiO2 Distributed Bragg Reflector for UV-C Wavelength Regime. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-8	1.8	9
168	Flexible InGaN nanowire membranes for enhanced solar water splitting. Optics Express, 2018, 26, A640-	A56\$0	11
167	375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. <i>Optics Express</i> , 2018 , 26, 12870-12877	3.3	31
166	3.2 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector. <i>Optics Express</i> , 2018 , 26, 3037-3045	3.3	39
165	Free-space optical channel characterization and experimental validation in a coastal environment. <i>Optics Express</i> , 2018 , 26, 6614-6628	3.3	22
164	Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications. <i>Optics Express</i> , 2018 , 26, A219-A226	3.3	19
163	Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations. <i>Photonics Research</i> , 2018 , 6, 457	6	24
162	III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. <i>Progress in Quantum Electronics</i> , 2018 , 61, 1-31	9.1	45
161	Diode junction temperature in ultraviolet AlGaN quantum-disks-in-nanowires. <i>Journal of Applied Physics</i> , 2018 , 124, 015702	2.5	7
160	Light based underwater wireless communications. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 08PA0	61.4	47
159	Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer. <i>Nanoscale Research Letters</i> , 2018 , 13, 41	5	13

158	Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration. <i>Journal of Applied Physics</i> , 2018 , 124, 083105	2.5	15
157	Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation. <i>ACS Photonics</i> , 2018 , 5, 3305-3314	6.3	37
156	Review of nanophotonics approaches using nanostructures and nanofabrication for III-nitrides ultraviolet-photonic devices. <i>Journal of Nanophotonics</i> , 2018 , 12, 1	1.1	28
155	Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices. <i>Journal of Nanophotonics</i> , 2018 , 12, 1	1.1	19
154	Semipolar GaN-based laser diodes for Gbit/s white lighting communication: devices to systems 2018 ,		9
153	High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. <i>Optics Express</i> , 2018 , 26, 26355-26364	3.3	31
152	Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays. <i>Small</i> , 2018 , 14, 1703	32:0:0	8
151	High Power GaN-Based Blue Superluminescent Diode Exceeding 450 mW 2018,		1
150	Observation of piezotronic and piezo-phototronic effects in n-InGaN nanowires/Ti grown by molecular beam epitaxy. <i>Nano Energy</i> , 2018 , 54, 264-271	17.1	17
149	Enhanced performance of 450 nm GaN laser diodes with an optical feedback for high bit-rate visible light communication 2018 ,		1
148	Ultrathin-Film Titania Photocatalyst on Nanocavity for CO Reduction with Boosted Catalytic Efficiencies. <i>Global Challenges</i> , 2018 , 2, 1800032	4.3	5
147	Tunable self-injection locked green laser diode. <i>Optics Letters</i> , 2018 , 43, 4931-4934	3	8
146	Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. <i>Nanoscale</i> , 2018 , 10, 15980-15988	7.7	14
145	Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication. <i>IEEE Photonics Journal</i> , 2018 , 10, 1-11	1.8	18
144	Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. <i>Applied Physics Letters</i> , 2017 , 110, 012101	3.4	34
143	Double Charged Surface Layers in Lead Halide Perovskite Crystals. <i>Nano Letters</i> , 2017 , 17, 2021-2027	11.5	52
142	Band Alignment at GaN/Single-Layer WSe Interface. ACS Applied Materials & Damp; Interfaces, 2017, 9, 91	1 9.9 11	 1 7 47
141	Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes 2017 ,		3

140	Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications 2017 ,		6
139	Semipolar IIIBitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. <i>Applied Physics Express</i> , 2017 , 10, 042201	·4	24
138	Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. <i>Nano Letters</i> , 2017 , 17, 1520-1528	1.5	129
137	Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In 0.33 Ga 0.67 N nanorods. <i>Nano Energy</i> , 2017 , 37, 158-167	7.1	43
136	Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires. <i>Applied Physics Letters</i> , 2017 , 110, 161110	·4	35
135	A Novel Mirror-Aided Non-Imaging Receiver for Indoor \$2times 2\$ MIMO-Visible Light Communication Systems. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 5630-5643	.6	11
134	InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. <i>RSC Advances</i> , 2017 , 7, 26665-26672	·7	24
133	Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-9	.8	58
132	Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 137-143	·4	32
131	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. <i>Applied Physics Letters</i> , 2017 , 111, 092104	·4	22
130	Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence. <i>Journal of Nanophotonics</i> , 2017 , 11, 026015 1.	.1	3
129	Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520 nm Laser Diode. <i>Journal of Optical Communications and Networking</i> , 2017 , 49, 826	.1	39
128	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. <i>Nano Letters</i> , 2017 , 17, 4759	1 757	202
127	Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. <i>Small</i> , 2017 , 13, 1603080	1	15
126	Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications 2017 ,		22
125	Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel 2017 ,		8
124	Performance evaluation of underwater wireless optical communications links in the presence of different air bubble populations 2017 ,		1
123	Underwater wireless optical communications: From system-level demonstrations to channel modelling 2017 ,		3

122	A New Simple Model for Underwater Wireless Optical Channels in the Presence of Air Bubbles 2017 ,		22
121	Free-space optical channel characterization in a coastal environment. <i>Journal of Communications</i> and Information Networks, 2017 , 2, 100-106		6
120	Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by Using Nitride/Air Distributed Bragg Reflector Nanogratings. <i>IEEE Photonics Journal</i> , 2017 , 9, 1-8	1.8	13
119	Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes 2017,		2
118	Thermodynamic photoinduced disorder in AlGaN nanowires. AIP Advances, 2017, 7, 125113	1.5	10
117	Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers 2017 ,		7
116	Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2. <i>Optical Materials Express</i> , 2017 , 7, 3697	2.6	8
115	Droop-free AlxGa1-xN/AlyGa1-yN quantum-disks-in-nanowires ultraviolet LED emitting at 337 nm on metal/silicon substrates. <i>Optics Express</i> , 2017 , 25, 1381-1390	3.3	54
114	Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. <i>Optics Express</i> , 2017 , 25, 17480-17487	3.3	55
113	71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. <i>Optics Express</i> , 2017 , 25, 23267-23274	3.3	37
112	Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter. <i>Optics Letters</i> , 2017 , 42, 3618-3621	3	17
111	Highly uniform ultraviolet-A quantum-confined AlGaN nanowire LEDs on metal/silicon with a TaN interlayer. <i>Optical Materials Express</i> , 2017 , 7, 4214	2.6	21
110	Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. <i>Optics Letters</i> , 2017 , 42, 2455-2458	3	61
109	Design and Deployment of Mobile FSO Communication System 2017 ,		2
108	Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel 2017 ,		3
107	Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications. <i>Optics Express</i> , 2016 , 24, 19228-36	3.3	19
106	Effect of annealing InGaP/InAlGaP laser structure at 950°C on laser characteristics. <i>Journal of Nanophotonics</i> , 2016 , 10, 036004	1.1	2
105	True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light. <i>ACS Photonics</i> , 2016 , 3, 2089-2095	6.3	21

104	Surface Restructuring of Hybrid Perovskite Crystals. ACS Energy Letters, 2016, 1, 1119-1126	20.1	115
103	Growth and development of Arabidopsis thaliana under single-wavelength red and blue laser light. <i>Scientific Reports</i> , 2016 , 6, 33885	4.9	21
102	GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode 2016 ,		2
101	Nanowires: Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy (Small 17/2016). <i>Small</i> , 2016 , 12, 2312	11	1
100	Real-Space Visualization of Energy Loss and Carrier Diffusion in a Semiconductor Nanowire Array Using 4D Electron Microscopy. <i>Advanced Materials</i> , 2016 , 28, 5106-11	24	23
99	Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. <i>Nanoscale</i> , 2016 , 8, 12294-306	7.7	95
98	Perovskite Nanocrystals as a Color Converter for Visible Light Communication. <i>ACS Photonics</i> , 2016 , 3, 1150-1156	6.3	171
97	First demonstration of orange-yellow light emitter devices in InGaP/InAlGaP laser structure using strain-induced quantum well intermixing technique 2016 ,		4
96	High-Modulation-Efficiency, Integrated Waveguide Modulator Diode at 448 nm. <i>ACS Photonics</i> , 2016 , 3, 262-268	6.3	59
95	Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 137-42	6.4	55
94	Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters. <i>Nano Letters</i> , 2016 , 16, 1056-63	11.5	73
93	GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs 2016 ,		3
92	Wireless optical transmission of 450 nm, 3.2 Gbit/s 16-QAM-OFDM signals over 6.6 m underwater channel 2016 ,		8
91	High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. <i>Optics Express</i> , 2016 , 24, 20281-6	3.3	41
90	20-meter underwater wireless optical communication link with 1.5 Gbps data rate. <i>Optics Express</i> , 2016 , 24, 25502-25509	3.3	145
89	On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy. <i>Optical Materials Express</i> , 2016 , 6, 2052	2.6	11
88	Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy. <i>Small</i> , 2016 , 12, 2313-20	11	34
87	Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. <i>Nano Letters</i> , 2016 , 16, 4616-23	11.5	81

86	Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. <i>Applied Physics Letters</i> , 2016 , 109, 081902	3.4	12
85	Determination of band offsets at GaN/single-layer MoS2 heterojunction. <i>Applied Physics Letters</i> , 2016 , 109, 032104	3.4	52
84	InGaN/GaN nanowire LEDs and lasers 2016 ,		2
83	High gain semiconductor optical amplifier Laser diode at visible wavelength 2016 ,		3
82	Bandgap measurements and the peculiar splitting of E2H phonon modes of InxAl1-xN nanowires grown by plasma assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2016 , 120, 045701	2.5	14
81	High-brightness semipolar (2021[]) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. <i>Optics Letters</i> , 2016 , 41, 2608-11	3	45
80	Photon management of GaN-based optoelectronic devices via nanoscaled phenomena. <i>Progress in Quantum Electronics</i> , 2016 , 49, 1-25	9.1	23
79	Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. <i>Optics Express</i> , 2016 , 24, 16586-94	3.3	76
78	An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination. <i>Nanoscale</i> , 2015 , 7, 16658-65	7.7	68
77	Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. <i>Optics Express</i> , 2015 , 23, 18746-53	3.3	104
76	4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. <i>Optics Express</i> , 2015 , 23, 23302-9	3.3	189
75	Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. <i>Optics Express</i> , 2015 , 23, 7991-8	3.3	13
74	2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode. <i>Optics Express</i> , 2015 , 23, 20743-8	3.3	130
73	InAs/GaAs quantum-dot intermixing: comparison of various dielectric encapsulants. <i>Optical Engineering</i> , 2015 , 54, 107107	1.1	1
72	Small signal modulation characteristics of red-emitting ([] 610 nm) III-nitride nanowire array lasers on (001) silicon. <i>Applied Physics Letters</i> , 2015 , 106, 071108	3.4	25
71	Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 051207	1.3	37
70	Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 5027-33	6.4	398
69	2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. <i>Optics Express</i> , 2015 , 23, 29779-87	3.3	90

(2013-2015)

68	Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication. <i>Scientific Reports</i> , 2015 , 5, 18690	4.9	83
67	III-nitride disk-in-nanowire 1.2 monolithic diode laser on (001)silicon. <i>Applied Physics Letters</i> , 2015 , 107, 191107	3.4	33
66	Achieving Uniform Carrier Distribution in MBE-Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-9	1.8	13
65	4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. <i>Optics Express</i> , 2015 , 23, 33656-66	3.3	66
64	2015,		1
63	Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 06F701	1.3	4
62	Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes. <i>Advanced Functional Materials</i> , 2014 , 24, 2305-2311	15.6	30
61	High Performance InAs/\${rm In}_{0.53}{rm Ga}_{0.23}{rm Al}_{0.24}{rm As}\$/InP Quantum Dot 1.55 \$mu{rm m}\$ Tunnel Injection Laser. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 7-14	2	48
60	Investigation of Chirped InAs/InGaAlAs/InP Quantum Dash Lasers as Broadband Emitters. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 51-61	2	15
59	Nanomembranes: Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes (Adv. Funct. Mater. 16/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 2412-24	4 15 .6	1
58	Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications. <i>Nanoscale</i> , 2014 , 6, 7917-23	7.7	26
57	Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. <i>Nano Letters</i> , 2014 , 14, 4535-41	11.5	127
56	Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes. <i>IEEE Photonics Journal</i> , 2014 , 6, 1-12	1.8	4
55	Red to Near-Infrared Emission from InGaN/GaN Quantum-Disks-in-Nanowires LED 2014 ,		2
54	Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices. <i>Progress in Quantum Electronics</i> , 2014 , 38, 237-313	9.1	47
53	The formation of hexagonal-shaped InGaN-nanodisk on GaN-nanowire observed in plasma source molecular beam epitaxy 2014 ,		1
52	On the phenomenon of large photoluminescence red shift in GaN nanoparticles. <i>Nanoscale Research Letters</i> , 2013 , 8, 342	5	31
51	2013,		5

50	2013,		5
49	A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 1321-1326	4.9	22
48	A possible approach on optical analogues of gravitational attractors. <i>Optics Express</i> , 2013 , 21, 8298-310	3.3	2
47	Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2013 , 103, 181102	3.4	2
46	Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film. <i>Journal of Applied Physics</i> , 2013 , 113, 044116	2.5	10
45	Spectral Analysis of Quantum-Dash Lasers: Effect of Inhomogeneous Broadening of the Active-Gain Region. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 608-615	2	6
44	Generation of J0-Bessel-Gauss beam by a heterogeneous refractive index map. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2012 , 29, 1252-8	1.8	3
43	Reduced thermal quenching in indium-rich self-organized InGaN/GaN quantum dots. <i>Journal of Applied Physics</i> , 2012 , 112, 063506	2.5	2
42	. IEEE Photonics Technology Letters, 2012 , 24, 724-726	2.2	32
41	Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips. <i>Review of Scientific Instruments</i> , 2012 , 83, 063708	1.7	31
40	Room temperature strong coupling effects from single ZnO nanowire microcavity. <i>Optics Express</i> , 2012 , 20, 11830-7	3.3	21
39	Thermal Annealing induced relaxation of compressive strain in porous GaN structures 2012,		3
38	InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon. <i>Applied Physics Letters</i> , 2011 , 98, 193102	3.4	117
37	Intrinsic Dynamics of Quantum-Dash Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2011 , 17, 1167-1174	3.8	6
36	Effect of active medium inhomogeneity on lasing characteristics of InAs/InP quantum-dash lasers 2010 ,		1
35	Fundamental and Dynamic Properties of Intermixed InGaAs-InGaAsP Quantum-Well Lasers. <i>IEEE Journal of Quantum Electronics</i> , 2010 , 46, 1368-1374	2	2
34	Effect of the interface glass on electrical performance of screen printed Ag thick-film contacts of Si solar cells. <i>Thin Solid Films</i> , 2010 , 518, e111-e113	2.2	15
33	Growth of pattern-free InN micropyramids by metalorganic chemical vapor deposition. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2010 , 207, 1895-1899	1.6	4

32	Multi-axis micromirror for optical coherence tomography. <i>Procedia Chemistry</i> , 2009 , 1, 1147-1150		1
31	The Dynamic Characteristics and Linewidth Enhancement Factor of Quasi-Supercontinuum Self-Assembled Quantum Dot Lasers. <i>IEEE Journal of Quantum Electronics</i> , 2009 , 45, 1177-1182	2	2
30	. IEEE Journal of Selected Topics in Quantum Electronics, 2008 , 14, 1230-1238	3.8	46
29	Quantum Dash Intermixing. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1239-1249	3.8	21
28	Sputtered SiO2 Induced Atomic Interdiffusion in Semiconductor Nano Heterostructures. <i>Advanced Materials Research</i> , 2007 , 31, 33-35	0.5	
27	Nano-Scale Bandgap Engineering Using Nitrogen Implantation: Quantum-Well, Quantum-Dash and Quantum-Dot Nanostructures. <i>Advanced Materials Research</i> , 2007 , 31, 182-184	0.5	
26	Broadband Emission in InAs/InGaAlAs Quantum-Dash-in-Well Laser. <i>Advanced Materials Research</i> , 2007 , 31, 173-175	0.5	
25	Investigation of carrier dynamics on InAs quantum dots embedded in InGaAs©aAs quantum wells based on time-resolved pump and probe differential photoluminescence. <i>Applied Physics Letters</i> , 2006 , 89, 181924	3.4	24
24	Superluminescent diodes using quantum dots superlattice. Journal of Crystal Growth, 2006, 288, 153-15	6 .6	14
23	Defect Annealing of InAsIhAlGaAs Quantum-Dash-in-Asymmetric-Well Laser. <i>IEEE Photonics Technology Letters</i> , 2006 , 18, 2329-2331	2.2	18
22	Experimental and theoretical study of multiple cations intermixing in InP-based quantum dot-in-well structure 2006 , 6129, 11		
21	Spatial Bandgap Tuning in Long Wavelength InAs Quantum Dots-in-Well Laser Structure. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 891, 1		
20	Multiple-wavelength integration in InGaAs-InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing. <i>IEEE Journal of Quantum Electronics</i> , 2004 , 40, 481-490	2	19
19	Generation of Multiple Energy Bandgaps Using a Gray Mask Process and Quantum Well Intermixing. Japanese Journal of Applied Physics, 2002, 41, 1080-1084	1.4	12
18	Through wafer via hole by reactive ion etching of GaAs 2002,		2
17	Multiple-channel InGaAs/InGaAsP electro-absorption intensity modulator fabricated using low-energy-phosphorus-ion-implantation-induced intermixing 2000 , 4087, 490		1
16	Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer. <i>Thin Solid Films</i> , 2000 , 363, 25-28	2.2	57
15	Embossed Bragg Gratings Based on Organically Modified Silane Waveguides in InP. <i>Applied Optics</i> , 2000 , 39, 4942-5	1.7	4

14	Development of a laser holographic interference lithography system 1999,		2
13	Effect of etch pit density of InP substrate on the stability of InGaAs/InGaAsP quantum well laser materials 1999 , 3896, 207		2
12	Deposition of potassium lithium niobate films by sol-gel method 1999 ,		2
11	Quantum well intermixing of GaAs/AlGaAs laser structure using one-step rapid thermal oxidation of AlAs 1999 , 3896, 184		
10	Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion. <i>IEEE Journal of Quantum Electronics</i> , 1997 , 33, 1784-1793	2	104
9	GaAs/AlGaAs photonic integrated circuits fabricated using impurity-free vacancy disordering 1995 , 2401, 74		10
8	Influences of ALD Al2O3 on the surface band-bending of c-plane, Ga-face GaN. <i>Japanese Journal of Applied Physics</i> ,	1.4	4
7	Coupling Plasmonic Pt Nanoparticles with AlGaN Nanostructures for Enhanced Broadband Photoelectrochemical-Detection Applications. <i>ACS Applied Nano Materials</i> ,	5.6	6
6	Photovoltage-Competing Dynamics in Photoelectrochemical Devices: Achieving Self-Powered Spectrally Distinctive Photodetection. <i>Advanced Functional Materials</i> ,2104515	15.6	8
5	Demonstration of Photoelectrochemical-Type Photodetectors Using Seawater as Electrolyte for Portable and Wireless Optical Communication. <i>Advanced Optical Materials</i> ,2102839	8.1	8
4	Theory and Practice of Orbital Angular Momentum and Beyond1-32		
3	Optical Wavefront Detection: A Beginner Tutorial1-21		
2	Visible-Light Laser Diodes and Superluminescent Diodes: Characteristics and Applications1-17		0
1	Harvesting Electricity by Harnessing Nature: Bioelectricity, Triboelectricity, and Method of Storage1-2	5	_