
Raul Torres-Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2205894/publications.pdf Version: 2024-02-01

PALL TOPPES-PULZ

#	Article	IF	CITATIONS
1	Nodal/Activin Signaling Drives Self-Renewal and Tumorigenicity of Pancreatic Cancer Stem Cells and Provides a Target for Combined Drug Therapy. Cell Stem Cell, 2011, 9, 433-446.	11.1	366
2	Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nature Communications, 2014, 5, 3964.	12.8	205
3	Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death and Disease, 2013, 4, e691-e691.	6.3	192
4	Immune Profiling and Quantitative Analysis Decipher the Clinical Role of Immune-Checkpoint Expression in the Tumor Immune Microenvironment of DLBCL. Cancer Immunology Research, 2019, 7, 644-657.	3.4	106
5	A faecal microbiota signature with high specificity for pancreatic cancer. Gut, 2022, 71, 1359-1372.	12.1	104
6	Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nature Cancer, 2021, 2, 1387-1405.	13.2	83
7	CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines, 2018, 6, 105.	3.2	76
8	Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing. Molecular Therapy, 2019, 27, 986-998.	8.2	76
9	Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genetics in Medicine, 2018, 20, 1644-1651.	2.4	73
10	NHEJ-Mediated Repair of CRISPR-Cas9-Induced DNA Breaks Efficiently Corrects Mutations in HSPCs from Patients with Fanconi Anemia. Cell Stem Cell, 2019, 25, 607-621.e7.	11.1	64
11	In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nature Communications, 2020, 11, 5060.	12.8	60
12	Efficient Recreation of t(11;22) EWSR1-FLI1+ in Human Stem Cells UsingÂCRISPR/Cas9. Stem Cell Reports, 2017, 8, 1408-1420.	4.8	52
13	Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling. Nature Communications, 2018, 9, 1466.	12.8	52
14	CRISPR-Cas9 technology: applications and human disease modelling. Briefings in Functional Genomics, 2017, 16, 4-12.	2.7	48
15	Physical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining. Molecular Cell, 2016, 64, 134-147.	9.7	47
16	Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency. Stem Cell Reports, 2016, 7, 602-618.	4.8	38
17	mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis. Cell Metabolism, 2018, 27, 118-135.e8.	16.2	38
18	NG2 antigen is a therapeutic target for MLL-rearranged B-cell acute lymphoblastic leukemia. Leukemia, 2019, 33, 1557-1569.	7.2	30

RAUL TORRES-RUIZ

#	Article	IF	CITATIONS
19	Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic Acids Research, 2020, 48, 12234-12251.	14.5	29
20	The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. Leukemia, 2017, 31, 2000-2005.	7.2	28
21	Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture. Nature Communications, 2021, 12, 6910.	12.8	27
22	Hematologic β-Tubulin VI Isoform Exhibits Genetic Variability That Influences Paclitaxel Toxicity. Cancer Research, 2012, 72, 4744-4752.	0.9	26
23	CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling. International Journal of Molecular Sciences, 2015, 16, 22151-22168.	4.1	26
24	Truncated RUNX1 protein generated by a novel t(1;21)(p32;q22) chromosomal translocation impairs the proliferation and differentiation of human hematopoietic progenitors. Oncogene, 2016, 35, 125-134.	5.9	26
25	Generation and characterization of a human iPSC cell line expressing inducible Cas9 in the "safe harbor―AAVS1 locus. Stem Cell Research, 2017, 21, 137-140.	0.7	26
26	Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo tumourigenicity. Oncogene, 2019, 38, 6226-6239.	5.9	25
27	Gene editing of PKLR gene in human hematopoietic progenitors through 5' and 3' UTR modified TALEN mRNA. PLoS ONE, 2019, 14, e0223775.	2.5	23
28	A Chemokine Targets the Nucleus: Cxcl12-Gamma Isoform Localizes to the Nucleolus in Adult Mouse Heart. PLoS ONE, 2009, 4, e7570.	2.5	21
29	Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Scientific Reports, 2021, 11, 3490.	3.3	21
30	A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL. Molecular Therapy, 2022, 30, 550-563.	8.2	21
31	An integration-defective lentivirus-based resource for site-specific targeting of an edited safe-harbour locus in the human genome. Gene Therapy, 2014, 21, 343-352.	4.5	18
32	Non-Integrative Lentivirus Drives High-Frequency cre-Mediated Cassette Exchange in Human Cells. PLoS ONE, 2011, 6, e19794.	2.5	17
33	CRISPR/Cas9 Technology: Applications and Human Disease Modeling. Progress in Molecular Biology and Translational Science, 2017, 152, 23-48.	1.7	17
34	Narrowing the Genetic Causes of Language Dysfunction in the 1q21.1 Microduplication Syndrome. Frontiers in Pediatrics, 2018, 6, 163.	1.9	16
35	RIAM-VASP Module Relays Integrin Complement Receptors in Outside-In Signaling Driving Particle Engulfment. Cells, 2020, 9, 1166.	4.1	16
36	Enhanced hemato-endothelial specification during human embryonic differentiation through developmental cooperation between <i>AF4-MLL</i> and <i>MLL-AF4</i> fusions. Haematologica, 2019, 104, 1189-1201.	3.5	15

RAUL TORRES-RUIZ

#	Article	IF	CITATIONS
37	Integrative methylome-transcriptome analysis unravels cancer cell vulnerabilities in infant MLL-rearranged B cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	14
38	Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers, 2021, 13, 4758.	3.7	14
39	Robustness of Catalytically Dead Cas9 Activators in Human Pluripotent and Mesenchymal Stem Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 196-204.	5.1	12
40	The value of lncRNAFENDRRandFOXF1as a prognostic factor for survival of lung adenocarcinoma. Oncotarget, 2020, 11, 1172-1185.	1.8	12
41	A clinically compatible drugâ€screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis. EMBO Molecular Medicine, 2022, 14, e14552.	6.9	12
42	PD-L1 expression in peripheral T-cell lymphomas is not related to either <i>PD-L1</i> gene amplification or rearrangements. Leukemia and Lymphoma, 2021, 62, 1648-1656.	1.3	9
43	CRISPR Approaches for the Diagnosis of Human Diseases. International Journal of Molecular Sciences, 2022, 23, 1757.	4.1	9
44	Alterations in SLC4A2, SLC26A7 and SLC26A9 Drive Acid–Base Imbalance in Gastric Neuroendocrine Tumors and Uncover a Novel Mechanism for a Co-Occurring Polyautoimmune Scenario. Cells, 2021, 10, 3500.	4.1	9
45	The "Neverâ€Ending―Mouse Models for MLLâ€Rearranged Acute Leukemia Are Still Teaching Us. HemaSphere, 2018, 2, e57.	2.7	8
46	The value of IncRNA and as a prognostic factor for survival of lung adenocarcinoma. Oncotarget, 2020, 11, 1172-1185.	1.8	8
47	Functional characterization of two enhancers located downstream FOXP2. BMC Medical Genetics, 2019, 20, 65.	2.1	7
48	Fast Diffusion Sustains Plasma Membrane Accumulation of Phosphatase of Regenerating Liver-1. Frontiers in Cell and Developmental Biology, 2020, 8, 585842.	3.7	4
49	InÂVitro and InÂVivo Genetic Disease Modeling via NHEJ-Precise Deletions Using CRISPR-Cas9. Molecular Therapy - Methods and Clinical Development, 2020, 19, 426-437.	4.1	4
50	OGG1 Inhibition Triggers Synthetic Lethality and Enhances The Effect of PARP Inhibitor Olaparib in BRCA1-Deficient TNBC Cells. Frontiers in Oncology, 2022, 12, .	2.8	4
51	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	3.7	3
52	Detection of chromosome instability by interphase FISH in mouse and human tissues. STAR Protocols, 2021, 2, 100631.	1.2	2
53	Functional Characterization of a Dual Enhancer/Promoter Regulatory Element Leading Human CD69 Expression. Frontiers in Genetics, 2020, 11, 552949.	2.3	1
54	Modeling mixed-lineage-rearranged leukemia initiation in CD34 ⁺ cells: a "CRISPR― solution. Haematologica, 2017, 102, 1467-1468.	3.5	1

RAUL TORRES-RUIZ

#	Article	IF	CITATIONS
55	Nodal/Activin Signaling Drives Self-Renewal and Tumorigenicity of Pancreatic Cancer Stem Cells and Provides a Target for Combined Drug Therapy. Cell Stem Cell, 2012, 10, 104.	11.1	Ο
56	The Use of Innovative Tools to Reproduce Human Cancer Translocations: Lessons from the CRISPR/Cas System. Current Biotechnology, 2015, 3, 273-278.	0.4	0
57	Modeling Cancer Using CRISPR-Cas9 Technology. , 2017, , 905-924.		0
58	NHEJ-Mediated Gene Editing, a Versatile Approach to Correct a Variety of Fanconi Anemia Genes in HSCs. Blood, 2019, 134, 4639-4639.	1.4	0