
Antti Snicker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2205379/publications.pdf Version: 2024-02-01

ANTTI SNICKED

#	Article	IF	CITATIONS
1	Simulating the impact of charge exchange on beam ions in MAST-U. Plasma Physics and Controlled Fusion, 2022, 64, 035014.	2.1	4
2	Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control. Nuclear Fusion, 2021, 61, 046006.	3.5	15
3	ASCOT orbit-following simulations of ion cyclotron heating with synthetic fast ion loss diagnostic: a first application to ASDEX Upgrade. Nuclear Fusion, 2021, 61, 086026.	3.5	7
4	Multiscale Chirping Modes Driven by Thermal Ions in a Plasma with Reactor-Relevant Ion Temperature. Physical Review Letters, 2021, 127, 025001.	7.8	8
5	Neutron rate estimates in MAST based on gyro-orbit modelling of fast ions. Nuclear Fusion, 2021, 61, 016028.	3.5	3
6	Validation of neutron emission and neutron energy spectrum calculations on a Mega Ampere Spherical Tokamak with directional relativistic spectrum simulator. Plasma Physics and Controlled Fusion, 2021, 63, 015015.	2.1	1
7	Basic design considerations for a frequency step-tunable electron cyclotron wave system to suppress NTMs in DEMO. Fusion Engineering and Design, 2021, 173, 112931.	1.9	2
8	Visualization of Fast Ion Phase-Space Flow Driven by Alfvén Instabilities. Physical Review Letters, 2021, 127, 235002.	7.8	5
9	Fast-ion physics in SPARC. Journal of Plasma Physics, 2020, 86, .	2.1	17
10	Modelling one-third field operation in the ITER pre-fusion power operation phase. Nuclear Fusion, 2019, 59, 126014.	3.5	19
11	The deteriorating effect of plasma density ï¬,uctuations on microwave beam quality. EPJ Web of Conferences, 2019, 203, 01005.	0.3	Ο
12	Characterisation of the fast-ion edge resonant transport layer induced by 3D perturbative fields in the ASDEX Upgrade tokamak through full orbit simulations. Plasma Physics and Controlled Fusion, 2019, 61, 014038.	2.1	30
13	The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER. Nuclear Fusion, 2018, 58, 016002.	3.5	40
14	Velocity space resolved absolute measurement of fast ion losses induced by a tearing mode in the ASDEX Upgrade tokamak. Nuclear Fusion, 2018, 58, 036005.	3.5	17
15	The effects of electron cyclotron heating and current drive on toroidal Alfvén eigenmodes in tokamak plasmas. Plasma Physics and Controlled Fusion, 2018, 60, 014026.	2.1	26
16	Interaction of the electron density fluctuations with electron cyclotron waves from the equatorial launcher in ITER. Plasma Physics and Controlled Fusion, 2018, 60, 014020.	2.1	10
17	Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond. Plasma Physics and Controlled Fusion, 2018, 60, 075006.	2.1	20
18	First absolute measurements of fast-ion losses in the ASDEX Upgrade tokamak. Plasma Physics and Controlled Fusion, 2017, 59, 105009.	2.1	12

ANTTI SNICKER

#	Article	IF	CITATIONS
19	Protecting ITER walls: fast ion power loads in 3D magnetic field. Plasma Physics and Controlled Fusion, 2017, 59, 014013.	2.1	17
20	Effect of plasma response on the fast ion losses due to ELM control coils in ITER. Nuclear Fusion, 2016, 56, 046014.	3.5	31
21	Cross-polarization scattering of diffracting electron-cyclotron beams in a turbulent plasma with the WKBeam code. Journal of Physics: Conference Series, 2016, 775, 012005.	0.4	2
22	Effect of the European design of TBMs on ITER wall loads due to fast ions in the baseline (15 MA), hybrid (12.5 MA), steady-state (9 MA) and half-field (7.5 MA) scenarios. Nuclear Fusion, 2016, 56, 112024.	3.5	10
23	ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas. Computer Physics Communications, 2014, 185, 1310-1321.	7.5	143
24	Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation. Physics of Plasmas, 2013, 20, 092505.	1.9	21
25	Simulations of fast ion wall loads in ASDEX Upgrade in the presence of magnetic perturbations due to ELM-mitigation coils. Nuclear Fusion, 2012, 52, 094014.	3.5	25
26	Fast ion power loads on ITER first wall structures in the presence of NTMs and microturbulence. Nuclear Fusion, 2011, 51, 083041.	3.5	19
27	Positrons as interface-sensitive probes of polar semiconductor heterostructures. Physical Review B, 2010, 82, .	3.2	23
28	Realistic Simulations of Fast-Ion Wall Distribution Including Effects Due to Finite Larmor Radius. IEEE Transactions on Plasma Science, 2010, 38, 2177-2184.	1.3	12
29	Fast-ion transport and toroidal rotation response to externally applied magnetic perturbations at the ASDEX Upgrade tokamak. Nuclear Fusion, 0, , .	3.5	1
30	Modelling the Alfvén eigenmode induced fast-ion flow measured by an imaging neutral particle analyzer. Nuclear Fusion, 0, , .	3.5	2