
Christoph W Sensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2205340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-coding Natural Antisense Transcripts: Analysis and Application. Journal of Biotechnology, 2021, 340, 75-101.	1.9	12
2	Cellular Immune Response Involving Multinucleated Giant Hemocytes with Two-Step Genome Amplification in the Drosophilid <i>Zaprionus indianus</i> . Journal of Innate Immunity, 2020, 12, 257-272.	1.8	7
3	Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. International Journal of Molecular Sciences, 2020, 21, 8062.	1.8	103
4	Circulating cell-free DNA is predominantly composed of retrotransposable elements and non-telomeric satellite DNA. Journal of Biotechnology, 2020, 313, 48-56.	1.9	15
5	Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 2020, 40, 107520.	6.0	97
6	Evaluation of host-based molecular markers for the early detection of human sepsis. Journal of Biotechnology, 2020, 310, 80-88.	1.9	11
7	Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca) Tj ETQq1	1 0,78431 4.9	4 rgBT /Over
8	Plasticity of a holobiont: desiccation induces fasting-like metabolism within the lichen microbiota. ISME Journal, 2019, 13, 547-556.	4.4	37
9	Instant Feedback Rapid Prototyping for GPU-Accelerated Computation, Manipulation, and Visualization of Multidimensional Data. International Journal of Biomedical Imaging, 2018, 2018, 1-9.	3.0	0
10	Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes. Journal of Biotechnology, 2017, 257, 222-232.	1.9	50
11	Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond. Frontiers in Microbiology, 2017, 8, 1845.	1.5	37
12	Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. Journal of Biotechnology, 2016, 235, 187-196.	1.9	26
13	Special Issue on acib, dedicated to the occasion of Prof. Dr. Helmut Schwab's 65th birthday. Journal of Biotechnology, 2016, 235, 1-2.	1.9	0
14	Carnivorous Nutrition in Pitcher Plants (<i>Nepenthes</i> spp.) via an Unusual Complement of Endogenous Enzymes. Journal of Proteome Research, 2016, 15, 3108-3117.	1.8	51
15	Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease. Scientific Reports, 2016, 6, 30980.	1.6	54
16	Whole genome sequence-based serogrouping of Listeria monocytogenes isolates. Journal of Biotechnology, 2016, 235, 181-186.	1.9	45
17	Characterization of two novel alcohol short-chain dehydrogenases/reductases from Ralstonia eutropha H16 capable of stereoselective conversion of bulky substrates. Journal of Biotechnology, 2016, 221, 78-90.	1.9	19
18	Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLoS ONE, 2016, 11, e0156892.	1.1	30

#	Article	IF	CITATIONS
19	Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biology, 2015, 15, 227.	1.6	70
20	Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME Journal, 2015, 9, 2028-2045.	4.4	87
21	Roles of Thermophiles and Fungi in Bitumen Degradation in Mostly Cold Oil Sands Outcrops. Applied and Environmental Microbiology, 2015, 81, 6825-6838.	1.4	41
22	Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L Frontiers in Microbiology, 2015, 6, 53.	1.5	196
23	BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Research, 2015, 43, D439-D446.	6.5	183
24	Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism. Journal of Biological Chemistry, 2015, 290, 18770-18781.	1.6	83
25	LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death and Disease, 2015, 6, e1668-e1668.	2.7	30
26	Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME Journal, 2015, 9, 412-424.	4.4	238
27	Transcriptome Profiling of Khat (Catha edulis) and Ephedra sinica Reveals Gene Candidates Potentially Involved in Amphetamine-Type Alkaloid Biosynthesis. PLoS ONE, 2015, 10, e0119701.	1.1	25
28	Diversity of Rumen Bacteria in Canadian Cervids. PLoS ONE, 2014, 9, e89682.	1.1	77
29	Genome research and bioinformatics with relevance to biotechnology. Journal of Biotechnology, 2014, 170, iv.	1.9	0
30	SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models. BMC Bioinformatics, 2014, 15, 229.	1.2	30
31	Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME Journal, 2013, 7, 908-921.	4.4	92
32	Phoenix 2: A locally installable large-scale 16S rRNA gene sequence analysis pipeline with Web interface. Journal of Biotechnology, 2013, 167, 393-403.	1.9	53
33	Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond. Genome, 2013, 56, 612-618.	0.9	57
34	Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166, 122-134.	1.9	196
35	Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome, 2013, 56, 599-611.	0.9	82
36	Metagenomics of Hydrocarbon Resource Environments Indicates Aerobic Taxa and Genes to be Unexpectedly Common. Environmental Science & Technology, 2013, 47, 10708-10717.	4.6	179

#	Article	IF	CITATIONS
37	Contribution of make-up water to the microbial community in an oilfield from which oil is produced by produced water re-injection. International Biodeterioration and Biodegradation, 2013, 81, 44-50.	1.9	20
38	Transcriptome Analysis of Thapsia laciniata Rouy Provides Insights into Terpenoid Biosynthesis and Diversity in Apiaceae. International Journal of Molecular Sciences, 2013, 14, 9080-9098.	1.8	43
39	Genomic compartmentalization of gene families encoding core components of metazoan signaling systems. Genome, 2013, 56, 215-225.	0.9	2
40	Unconventional microarray design reveals the response to obesity is largely tissue specific: analysis of common and divergent responses to diet-induced obesity in insulin-sensitive tissues. Applied Physiology, Nutrition and Metabolism, 2012, 37, 257-268.	0.9	18
41	Complete Genome Sequence of the Fruiting Myxobacterium Corallococcus coralloides DSM 2259. Journal of Bacteriology, 2012, 194, 3012-3013.	1.0	65
42	Molecular and phylogenetic approaches for assessing sources of Cryptosporidium contamination in water. Water Research, 2012, 46, 5135-5150.	5.3	49
43	The Bluejay Genome Browser. Current Protocols in Bioinformatics, 2012, 37, Unit10.9.	25.8	1
44	Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 2012, 81, 124-133.	1.3	89
45	Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30, 127-131.	4.9	128
46	Methanogenic toluene metabolism: community structure and intermediates. Environmental Microbiology, 2012, 14, 754-764.	1.8	67
47	A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison). Genes and Genomics, 2012, 34, 83-91.	0.5	2
48	Compositions of microbial communities associated with oil and water in a mesothermic oil field. Antonie Van Leeuwenhoek, 2012, 101, 493-506.	0.7	75
49	Metabolomic response to exercise training in lean and diet-induced obese mice. Journal of Applied Physiology, 2011, 110, 1311-1318.	1.2	48
50	Integrative Visualization of Temporally Varying Medical Image Patterns. Journal of Integrative Bioinformatics, 2011, 8, 75-84.	1.0	0
51	Carbon and Sulfur Cycling by Microbial Communities in a Gypsum-Treated Oil Sands Tailings Pond. Environmental Science & Technology, 2011, 45, 439-446.	4.6	177
52	Microbial community succession in a bioreactor modeling a souring low-temperature oil reservoir subjected to nitrate injection. Applied Microbiology and Biotechnology, 2011, 91, 799-810.	1.7	68
53	Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline. Applied and Environmental Microbiology, 2011, 77, 6908-6917.	1.4	74
54	Estimating Cell Count and Distribution in Labeled Histological Samples Using Incremental Cell Search. International Journal of Biomedical Imaging, 2011, 2011, 1-16.	3.0	7

#	Article	IF	CITATIONS
55	Integrative visualization of temporally varying medical image patterns. Journal of Integrative Bioinformatics, 2011, 8, 161.	1.0	0
56	Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development. BMC Developmental Biology, 2010, 10, 18.	2.1	43
57	Building generic anatomical models using virtual model cutting and iterative registration. BMC Medical Imaging, 2010, 10, 5.	1.4	0
58	Phylogenetic Analysis of the MS4A and TMEM176 Gene Families. PLoS ONE, 2010, 5, e9369.	1.1	57
59	Programming-by-Example Meets the Semantic Web: Using Ontologies and Web Services to Close the Semantic Gap. , 2010, , .		1
60	Visualization of biological shape transformation by 3D model morphing. , 2010, , .		0
61	Helping Biologists Effectively Build Workflows, without Programming. Lecture Notes in Computer Science, 2010, , 74-89.	1.0	2
62	Spatiotemporal integration of molecular and anatomical data in virtual reality using semantic mapping. International Journal of Nanomedicine, 2009, 4, 79.	3.3	4
63	Rapid Access to Genes of Biotechnologically Useful Enzymes by Partial Genome Sequencing: The Thermoalkaliphile <i>Anaerobranca gottschalkii</i> . Journal of Molecular Microbiology and Biotechnology, 2009, 16, 81-90.	1.0	7
64	Disease-specific motifs can be identified in circulating nucleic acids from live elk and cattle infected with transmissible spongiform encephalopathies. Nucleic Acids Research, 2009, 37, 550-556.	6.5	75
65	Prepublication data sharing. Nature, 2009, 461, 168-170.	13.7	243
66	CAVEman, An Object-Oriented Model of the Human Body. , 2009, , 289-300.		2
67	Geometric Morphometrics and the Study of Development. , 2009, , 319-336.		7
68	Virtual Reality Meets Functional Genomics. , 2009, , 601-613.		0
69	Genomic Data Visualization: The Bluejay System. , 2009, , 395-409.		0
70	Fast interactive integration of cross-sectional image datasets and surface data for morphometric analysis. Studies in Health Technology and Informatics, 2009, 142, 183-8.	0.2	1
71	An efficient virtual dissection tool to create generic models for anatomical atlases. Studies in Health Technology and Informatics, 2009, 142, 426-8.	0.2	1
72	CAVEman: Standardized anatomical context for biomedical data mapping. Anatomical Sciences Education, 2008, 1, 10-18.	2.5	14

#	Article	IF	CITATIONS
73	A novel group of multiâ€GAPâ€domain proteins. Molecular Reproduction and Development, 2008, 75, 1578-1589.	1.0	Ο
74	Bluejay 1.0: genome browsing and comparison with rich customization provision and dynamic resource linking. BMC Bioinformatics, 2008, 9, 450.	1.2	9
75	Interspecies data mining to predict novel ING-protein interactions in human. BMC Genomics, 2008, 9, 426.	1.2	12
76	Creating Bioinformatics Semantic Web Services from Existing Web Services: A Real-World Application of SAWSDL. , 2008, , .		4
77	Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions. Applied and Environmental Microbiology, 2008, 74, 2404-2413.	1.4	40
78	Interoperability with Moby 1.0–It's better than sharing your toothbrush!. Briefings in Bioinformatics, 2008, 9, 220-231.	3.2	91
79	Visual Comparison of Multiple Gene Expression Datasets in a Genomic Context. Journal of Integrative Bioinformatics, 2008, 5, .	1.0	5
80	Integration of genomic and medical data into a 3D atlas of human anatomy. Studies in Health Technology and Informatics, 2008, 132, 526-31.	0.2	6
81	Visual comparison of multiple gene expression datasets in a genomic context. Journal of Integrative Bioinformatics, 2008, 5, .	1.0	1
82	Response of the Hyperthermophilic Archaeon <i>Sulfolobus solfataricus</i> to UV Damage. Journal of Bacteriology, 2007, 189, 8708-8718.	1.0	128
83	Semantic Web Service provision: a realistic framework for Bioinformatics programmers. Bioinformatics, 2007, 23, 1178-1180.	1.8	14
84	Tracking Host Sources of Cryptosporidium spp. in Raw Water for Improved Health Risk Assessment. Applied and Environmental Microbiology, 2007, 73, 3945-3957.	1.4	107
85	Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone, 2007, 40, 957-965.	1.4	178
86	Combining a High-Throughput Bioinformatics Grid and Bioinformatics Web Services. , 2007, , 1-10.		0
87	Bluejay: A Highly Scalable and Integrative Visual Environment for Genome Exploration. , 2007, , .		2
88	Using a Novel Data Transformation Technique to Provide the EMBOSS Software Suite as Semantic Web Services. , 2007, , .		6
89	Seahawk: moving beyond HTML in Web-based bioinformatics analysis. BMC Bioinformatics, 2007, 8, 208.	1.2	35
90	Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology, 2007, 365, 48-59.	1.1	56

6

#	Article	IF	CITATIONS
91	Effect of Voxel Size on 3D Micro-CT Analysis of Cortical Bone Porosity. Calcified Tissue International, 2007, 80, 211-219.	1.5	86
92	Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta, 2007, 225, 1085-1106.	1.6	98
93	Enhancing Bluejay with Scalability, Genome Comparison and Microarray Visualization. Studies in Classification, Data Analysis, and Knowledge Organization, 2007, , 557-568.	0.1	0
94	Expressed sequence tags from Madagascar periwinkle (Catharanthus roseus). FEBS Letters, 2006, 580, 4501-4507.	1.3	49
95	Creating hierarchical models of protein families based on Expressed Sequence Tags: The "Sprockets― analysis pipeline. Analytica Chimica Acta, 2006, 564, 123-132.	2.6	Ο
96	Reconstructing the Mosaic Glycolytic Pathway of the Anaerobic Eukaryote Monocercomonoides. Eukaryotic Cell, 2006, 5, 2138-2146.	3.4	38
97	On the way to building an integrated computational environment for the study of developmental patterns and genetic diseases. International Journal of Nanomedicine, 2006, 1, 89-96.	3.3	7
98	Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians. Trends in Genetics, 2005, 21, 633-639.	2.9	315
99	Phylogenetic Analysis of the ING Family of PHD Finger Proteins. Molecular Biology and Evolution, 2005, 22, 104-116.	3.5	164
100	Jabiru: Harnessing Java 3D Behaviors for Device and Display Portability. IEEE Computer Graphics and Applications, 2005, 25, 70-80.	1.0	5
101	MODULAR NEURAL NETWORKS AND THEIR APPLICATION IN EXON PREDICTION. , 2005, , .		2
102	Bioinformatics visualization and integration with open standards: the Bluejay genomic browser. In Silico Biology, 2005, 5, 187-98.	0.4	13
103	Reconstruction of the Central Carbohydrate Metabolism of Thermoproteus tenax by Use of Genomic and Biochemical Data. Journal of Bacteriology, 2004, 186, 2179-2194.	1.0	66
104	Osprey: a comprehensive tool employing novel methods for the design of oligonucleotides for DNA sequencing and microarrays. Nucleic Acids Research, 2004, 32, e133-e133.	6.5	47
105	4D Bioinformatics: A New Look at the Ribosome as an Example. IUBMB Life, 2003, 55, 279-283.	1.5	7
106	From model organisms to organismal models: visualizing complex genomic datasets. Biosilico, 2003, 1, 23-26.	0.5	1
107	The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1414-1419.	3.3	352
108	Transcription Profiling ofCandida albicansCells Undergoing the Yeast-to-Hyphal Transition. Molecular Biology of the Cell, 2002, 13, 3452-3465.	0.9	346

#	Article	IF	CITATIONS
109	Using CAVE® Technology for Functional Genomics Studies. Diabetes Technology and Therapeutics, 2002, 4, 867-871.	2.4	11
110	First insight into the genome of an uncultivated crenarchaeote from soil. Environmental Microbiology, 2002, 4, 603-611.	1.8	161
111	The Phylogenetic Position of the Pelobiont Mastigamoeba balamuthi Based on Sequences of rDNA and Translation Elongation Factors EF-1alpha and EF-2. Journal of Eukaryotic Microbiology, 2002, 49, 1-10.	0.8	35
112	Bluejay: A Browser for Linear Units in Java. , 2002, , 183-194.		1
113	Properties of the recombinant α-glucosidase from Sulfolobus solfataricus in relation to starch processing. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 787-794.	1.8	13
114	Presence of Prokaryotic and Eukaryotic Species in All Subgroups of the PP i -Dependent Group II Phosphofructokinase Protein Family. Journal of Bacteriology, 2001, 183, 6714-6716.	1.0	30
115	The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7835-7840.	3.3	718
116	Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles, 2000, 4, 175-179.	0.9	115
117	Enolase from Trypanosoma brucei, from the Amitochondriate Protist Mastigamoeba balamuthi, and from the Chloroplast and Cytosol of Euglena gracilis: Pieces in the Evolutionary Puzzle of the Eukaryotic Glycolytic Pathway. Molecular Biology and Evolution, 2000, 17, 989-1000.	3.5	65
118	High Spontaneous Mutation Rate in the Hyperthermophilic Archaeon Sulfolobus solfataricus Is Mediated by Transposable Elements. Journal of Bacteriology, 2000, 182, 2574-2581.	1.0	116
119	Identification and Molecular Characterization of the First α-Xylosidase from an Archaeon. Journal of Biological Chemistry, 2000, 275, 22082-22089.	1.6	68
120	MAGPIE/EGRET Annotation of the 2.9-Mb Drosophila melanogaster Adh Region. Genome Research, 2000, 10, 502-510.	2.4	19
121	Gene content and organization of a 281-kbp contig from the genome of the extremely thermophilic archaeon, <i>Sulfolobus solfataricus</i> P2. Genome, 2000, 43, 116-136.	0.9	2
122	Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics, 1999, 22, 336-345.	9.4	1,609
123	Mutations in the ABC 1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet, The, 1999, 354, 1341-1346.	6.3	345
124	Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. Journal of Molecular Biology, 1999, 291, 47-57.	2.0	52
125	Molecular Analysis of pDL10 from Acidianus ambivalens Reveals a Family of Related Plasmids from Extremely Thermophilic and Acidophilic Archaea. Genetics, 1999, 152, 1307-1314.	1.2	40
126	Completing the sequence of the Sulfolobus solfataricus P2 genome. Extremophiles, 1998, 2, 305-312.	0.9	58

#	Article	IF	CITATIONS
127	Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles, 1998, 2, 391-393.	0.9	44
128	NUCLEOTIDE SEQUENCES OF SMALL-SUBUNIT AND INTERNAL TRANSCRIBED SPACER REGIONS OF NUCLEAR rRNA GENES SUPPORT THE AUTONOMY OF SOME GENERA OF THE GELIDIALES (RHODOPHYTA). Journal of Phycology, 1998, 34, 299-305.	1.0	18
129	Sulfolobus genome: from genomics to biology. Current Opinion in Microbiology, 1998, 1, 584-588.	2.3	23
130	Sequencing the Genome of Sulfolobus solfataricus P2. , 1998, , 552-558.		0
131	MAGPIE: A Multipurpose Automated Genome Project Investigation Environment for Ongoing Sequencing Projects. , 1998, , 559-566.		0
132	Evolutionary analysis of the hisCGABdFDEHI gene cluster from the archaeon Sulfolobus solfataricus P2. Journal of Bacteriology, 1997, 179, 4429-4432.	1.0	17
133	Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie, 1996, 78, 302-310.	1.3	116
134	TheSulfolobus solfataricusP2 genome project. FEBS Letters, 1996, 389, 88-91.	1.3	21
135	MAGPIE: automated genome interpretation. Trends in Genetics, 1996, 12, 76-78.	2.9	106
136	Complete Nucleotide Sequence of theSulfolobus islandicusMulticopy Plasmid pRN1. Plasmid, 1996, 35, 141-144.	0.4	63
137	Organizational characteristics and information content of an archaeal genome: 156kb of sequence from Sulfolobus solfataricus P2. Molecular Microbiology, 1996, 22, 175-191.	1.2	93
138	The origin of land plants: Phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. Journal of Molecular Evolution, 1995, 41, 74-84.	0.8	107
139	Nucleotide sequence and analysis of the centromeric region of yeast chromosome IX. Yeast, 1995, 11, 61-78.	0.8	21
140	Complete DNA sequence of yeast chromosome XI. Nature, 1994, 369, 371-378.	13.7	382
141	Sequencing and analysis of 51·6 kilobases on the left arm of chromosome XI fromSaccharomyces cerevisiae reveals 23 open reading frames including theFAS1 gene. Yeast, 1993, 9, 1343-1348.	0.8	9
142	The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting. European Journal of Phycology, 1993, 28, 93-97.	0.9	68
143	Separation of up to 1000 bases on a modified A.L.F. DNA sequencer. Nucleic Acids Research, 1993, 21, 6042-6044.	6.5	18
144	Molecular Phylogeny of Algal Plastids: A Brief Review of Host/Endosymbiont Genome Development Based on Sequence Comparisons. , 1992, , 171-192.		0

9

#	Article	IF	CITATIONS
145	Bioinformatics: Genomic Data Representation through Images— MACPIE as an Example. , 0, , 345-363.		2
146	Ethical, Legal and Social Issues: Genomics— Five Years from Now. , 0, , 397-405.		0
147	Genome Data Representation Through Images: The MAGPIE/Bluejay System. , 0, , 383-414.		3
148	Systems Biology. , 0, , 491-505.		0
149	The (Im)perfect Human— His Own Creator? Bioethics and Genetics at the Beginning of Life. , 0, , 561-570.		Ο
150	The Future of Large-Scale Life Science Research. , 0, , 572-584.		0
151	Yeast Two-hybrid Technologies. , 0, , 261-272.		Ο
152	Structural Genomics. , 0, , 273-295.		0
153	Sequencing Microbial Genomes. , 0, , 1-9.		3
154	Genomics-Five Years from Now. , 0, , 431-439.		0