Brigitta TÃ³th

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2204832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar. Plant Physiology and Biochemistry, 2011, 49, 494-498.	5.8	52
2	Changes induced by cadmium stress and iron deficiency in the composition and organization of thylakoid complexes in sugar beet (Beta vulgaris L.). Environmental and Experimental Botany, 2014, 101, 1-11.	4.2	52
3	Heavy metal accumulation and tolerance of energy grass (Elymus elongatus subsp. ponticus cv.) Tj ETQq1 1 0.784	1314 rgBT	/Overlock
4	Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?. Planta, 2016, 244, 1303-1313.	3.2	22
5	Evaluation of the Nutrient Composition of Maize in Different NPK Fertilizer Levels Based on Multivariate Method Analysis. International Journal of Agronomy, 2021, 2021, 1-13.	1.2	16
6	The Application of Phytohormones as Biostimulants in Corn Smut Infected Hungarian Sweet and Fodder Corn Hybrids. Plants, 2021, 10, 1822.	3.5	15
7	Incorporation of iron into chloroplasts triggers the restoration of cadmium induced inhibition of photosynthesis. Journal of Plant Physiology, 2016, 202, 97-106.	3.5	13
8	Effects of different fertilization levels on the concentration of high molecular weight glutenin subunits of two spring, hard red bread wheat cultivars. Cereal Chemistry, 2019, 96, 1004-1010.	2.2	13
9	Revisiting the iron pools in cucumber roots: identification and localization. Planta, 2016, 244, 167-179.	3.2	11
10	Effects of short term iron citrate treatments at different pH values on roots of iron-deficient cucumber: A Mössbauer analysis. Journal of Plant Physiology, 2012, 169, 1615-1622.	3.5	10
11	Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L.) in field experiments. South African Journal of Botany, 2021, 140, 153-160.	2.5	10
12	The Influence of Soil Acidity on the Physiological Responses of Two Bread Wheat Cultivars. Plants, 2020, 9, 1472.	3.5	9
13	Analyzing the Effect of Intensive and Low-Input Agrotechnical Support for the Physiological, Phenometric, and Yield Parameters of Different Maize Hybrids Using Multivariate Statistical Methods. International Journal of Agronomy, 2021, 2021, 1-11.	1.2	8
14	Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2016, 71, 323-334.	1.4	6
15	Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics. Plant Physiology and Biochemistry, 2017, 118, 627-633.	5.8	6
16	Examination of the Productivity and Physiological Responses of Maize (Zea mays L.) to Nitrapyrin and Foliar Fertilizer Treatments. Plants, 2021, 10, 2426.	3.5	6
17	Influence of low soil nitrogen and phosphorus on gluten polymeric and monomeric protein distribution in two high quality spring wheat cultivars. Journal of Cereal Science, 2020, 91, 102867.	3.7	5
18	Supraoptimal Iron Nutrition of Brassica napus Plants Suppresses the Iron Uptake of Chloroplasts by Down-Regulating Chloroplast Ferric Chelate Reductase. Frontiers in Plant Science, 2021, 12, 658987.	3.6	5

Brigitta TÃ³th

#	Article	IF	CITATIONS
19	The Evaluation of the Effects of Zn, and Amino Acid-Containing Foliar Fertilizers on the Physiological and Biochemical Responses of a Hungarian Fodder Corn Hybrid. Agronomy, 2022, 12, 1523.	3.0	5
20	The use of industrial waste materials for alleviation of iron deficiency in sunflower and maize. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 145-151.	2.0	4
21	Possible Recycling of Industrial Wastes and By-Products in agriculture. Procedia Environmental Sciences, 2013, 18, 737-741.	1.4	3
22	Compensation effect of bacterium containing biofertilizer on the growth ofCucumis sativusL. under Al-stress conditions. Acta Biologica Hungarica, 2013, 64, 60-70.	0.7	3
23	Effect of nitrogen doses on the chlorophyll concentration, yield and protein content of different genotype maize hybrids in Hungary. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.5	3
24	The Physiological and Biochemical Responses of European Chestnut (Castanea sativa L.) to Blight Fungus (Cryphonectria parasitica (Murill) Barr). Plants, 2021, 10, 2136.	3.5	3
25	Effect of bean rust [Uromyces appendiculatus (Pers.) Strauss] on photosynthetic characteristics, superoxide-dismutase activity, and lipid peroxidation of common bean (Phaseolus vulgaris L.). Acta Alimentaria, 2019, 48, 253-259.	0.7	2
26	Effect of nitrogen fertiliser on the rate of lipid peroxidation of different maize hybrids in a long-term multifactorial experiment. Acta Alimentaria, 2021, , .	0.7	2
27	Cultivar Differences in the Biochemical and Physiological Responses of Common Beans to Aluminum Stress. Plants, 2021, 10, 2097.	3.5	2
28	Low nitrogen and phosphorus effects on wheat Fe, Zn, phytic acid and phenotypic traits. South African Journal of Science, 2021, 117, .	0.7	1
29	The Effect of Four Industrial By-Products on the Photosynthetic Pigments, Dry Weight and Ultrastructure of Zea mays L. Biology Bulletin, 2021, 48, 296-305.	0.5	1
30	First Report of <i>Sclerotinia sclerotiorum</i> on Watercress (<i>Nasturtium officinale</i>) in an Aquaponic System in Hungary. Plant Disease, 2022, 106, 767.	1.4	1
31	Evaluation of Complete Fertilizer in the Aspect of the Antioxidant Enzyme System of Maize Hybrids. Agronomy, 2021, 11, 2129.	3.0	1
32	ALLELOPATHIC EFFECT OF SILYBUM MARIANUM L. GAERTN. ON GROWTH AND NUTRIENT UPTAKE OF WINTER WHEAT (TRITICUM AESTIVUM L.). Applied Ecology and Environmental Research, 2017, 15, 769-778.	0.5	1
33	Investigation of Ustilago maydis Infection on Some Physiological Parameters and Phenotypic Traits of Maize. International Journal of Innovative Approaches in Agricultural Research, 2020, 4, 396-406.	0.1	1
34	Industrial side-products as possible soil-amendments. Journal of Environmental Biology, 2012, 33, 425-9.	0.5	1
35	A közeg pH-jÃįnak szerepe a lÃįtens tÃįpanyaghiÃįny kialakulÃįsÃįban fiatal kukorica és uborka növények Novenytermeles, 2010, 59, 5-23.	nél. 0.1	0
36	Mész- és cementgyári porok növényfiziológiai hatásának vizsgálata. Novenytermeles, 2010, 59, 65-8	330.1	0

Brigitta TÃ³th

#	Article	IF	CITATIONS
37	Possible alternatives in crop nutrition. Agrártudományi Közlemények, 2011, , 109-112.	0.3	0
38	Physiological examination of some industrial wastes under laboratory conditions. Agrártudományi Közlemények, 2012, , 241-246.	0.3	0
39	Industrial By-Products: Stress Factors or Nutrients. Journal of Medical and Bioengineering, 2014, , 288-291.	0.5	Ο
40	EFFECT OF SILYBUM MARIANUM (L.) GAERTN. ON GERMINATION, EARLY GROWTH AND NUTRIENT UPTAKE OF ZEA MAYS L Applied Ecology and Environmental Research, 2018, 16, 2255-2265.	0.5	0