Sung-Yong Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2204450/publications.pdf

Version: 2024-02-01

37 papers	1,249 citations	19 h-index	477307 29 g-index
Papero			5 maen
37 all docs	37 docs citations	37 times ranked	1312 citing authors

#	Article	IF	CITATIONS
1	Optical Dielectrophoretic (DEP) Manipulation of Oil-Immersed Aqueous Droplets on a Plasmonic-Enhanced Photoconductive Surface. Micromachines, 2022, 13, 112.	2.9	3
2	Lab on a smartphone (LOS): A smartphone-integrated, plasmonic-enhanced optoelectrowetting (OEW) platform for on-chip water quality monitoring through LAMP assays. Sensors and Actuators B: Chemical, 2022, 358, 131543.	7.8	15
3	Capacitance Effects of a Hydrophobic-Coated Ion Gel Dielectric on AC Electrowetting. Micromachines, 2021, 12, 320.	2.9	2
4	Vibration motor-integrated low-cost, miniaturized system for rapid quantification of red blood cell aggregation. Lab on A Chip, 2020, 20, 3930-3937.	6.0	14
5	Plasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulation. Sensors and Actuators B: Chemical, 2020, 308, 127704.	7.8	15
6	Design and optimization of a novel electrowetting-driven solar-indoor lighting system. Applied Energy, 2020, 269, 115128.	10.1	9
7	Aluminium Nanoparticle-Enhanced Optoelectrowetting Device for Effective Light-Driven Droplet Manipulation. , 2019, , .		O
8	An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water. Harmful Algae, 2019, 88, 101638.	4.8	21
9	Rapid and in-situ detection of fecal indicator bacteria in water using simple DNA extraction and portable loop-mediated isothermal amplification (LAMP) PCR methods. Water Research, 2019, 160, 371-379.	11.3	52
10	Optofluidic Solar Indoor Lighting for Sustainable Buildings. , 2019, , .		0
11	Dispersive Optical Systems for Highly-Concentrated Solar Spectrum Splitting: Concept, Design, and Performance Analyses. Energies, 2019, 12, 4719.	3.1	4
12	Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality. Lab on A Chip, 2018, 18, 532-539.	6.0	31
13	Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings. Lab on A Chip, 2018, 18, 1725-1735.	6.0	24
14	Lab on a Smartphone (LOS): A Low-Cost Portable Platform for Real-Time on-Site Water Quality Detection. , $2018, \ldots$		0
15	An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD). Sensors and Actuators B: Chemical, 2017, 240, 909-915.	7.8	53
16	Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1431-1437.	4.0	21
17	A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication. Materials, 2017, 10, 41.	2.9	9
18	Single-Sided Digital Microfluidic (SDMF) Devices for Effective Coolant Delivery and Enhanced Two-Phase Cooling. Micromachines, 2017, 8, 3.	2.9	26

#	Article	IF	CITATIONS
19	Biomimetic Precapillary Flow Patterns for Enhancing Blood Plasma Separation: A Preliminary Study. Sensors, 2016, 16, 1543.	3.8	3
20	High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method. Applied Physics Letters, 2016, 108, .	3.3	31
21	Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method. Lab on A Chip, 2016, 16, 1831-1839.	6.0	78
22	Optofluidic tunable liquid prisms. , 2016, , .		0
23	Focal point control using an EWOD-based tuneable Fresnel lens. , 2016, , .		0
24	Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection. Applied Energy, 2016, 162, 450-459.	10.1	45
25	An Ion Gel as a Low-Cost, Spin-Coatable, High-Capacitance Dielectric for Electrowetting-on-Dielectric (EWOD). Langmuir, 2015, 31, 8512-8518.	3.5	67
26	Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization. Solar Energy, 2013, 89, 152-161.	6.1	45
27	Microfluidic Tunable Liquid Prisms for Solar Beam Steering and Concentration. , 2013, , .		4
28	Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter. Lab on A Chip, 2012, 12, 1378.	6.0	111
29	Active Hot Spot Cooling Controlled by Single-Sided Electrowetting-on-Dielectric (SEWOD). , 2012, , .		3
30	High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab on A Chip, 2011, 11, 1010.	6.0	119
31	Light-Driven Droplet Manipulation Technologies for Lab-on-a-Chip Applications. Advances in OptoElectronics, 2011, 2011, 1-12.	0.6	44
32	Single-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patterns. Lab on A Chip, 2010, 10, 1655.	6.0	121
33	A laser driven optofluidic device for high-speed and precise volume-controlled droplet generation on demand. , 2010, , .		0
34	A light-induced dielectrophoretic droplet manipulation platform. Lab on A Chip, 2009, 9, 3228.	6.0	86
35	Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. Applied Physics Letters, 2008, 92, 151101-1511013.	3.3	54
36	Continuous optoelectrowetting for picoliter droplet manipulation. Applied Physics Letters, 2008, 93, .	3.3	128

Sung-Yong Park

#	Article	IF	CITATIONS
37	Distributed Robust Control of Compliant Framed Wheeled Modular Mobile Robots. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006, 128, 489-498.	1.6	11