
Alejandro K Samhan-Arias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2204168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nature Neuroscience, 2012, 15, 1407-1413.	14.8	254
2	Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice. PLoS ONE, 2010, 5, e11468.	2.5	225
3	Neuroprotective Actions of Flavonoids. Current Medicinal Chemistry, 2011, 18, 1195-1212.	2.4	130
4	Hydrogen Sulfide Raises Cytosolic Calcium in Neurons Through Activation of L-Type Ca2+ Channels. Antioxidants and Redox Signaling, 2008, 10, 31-42.	5.4	118
5	Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radical Biology and Medicine, 2004, 37, 48-61.	2.9	106
6	Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactionsâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1375-1385.	13.7	103
7	A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2011, 2, 497.	12.8	91
8	Mitophagy in Human Diseases. International Journal of Molecular Sciences, 2021, 22, 3903.	4.1	91
9	Kaempferol protects against rat striatal degeneration induced by 3â€nitropropionic acid. Journal of Neurochemistry, 2009, 111, 473-487.	3.9	77
10	Phosphomimetic Substitution of Cytochrome <i>c</i> Tyrosine 48 Decreases Respiration and Binding to Cardiolipin and Abolishes Ability to Trigger Downstream Caspase Activation. Biochemistry, 2010, 49, 6705-6714.	2.5	77
11	Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Research, 2007, 1182, 123-137.	2.2	75
12	Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles upon Inhalation of Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 7342-7353.	14.6	64
13	Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2147-2155.	2.6	64
14	Heterolytic Reduction of Fatty Acid Hydroperoxides by Cytochrome <i>c</i> /Cardiolipin Complexes: Antioxidant Function in Mitochondria. Journal of the American Chemical Society, 2009, 131, 11288-11289.	13.7	62
15	Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2413-2423.	2.6	57
16	Targeting Lipid Peroxidation for Cancer Treatment. Molecules, 2020, 25, 5144.	3.8	51
17	Clustering of plasma membrane-bound cytochrome b reductase within â€~lipid raft' microdomains of the neuronal plasma membrane. Molecular and Cellular Neurosciences, 2009, 40, 14-26.	2.2	42
18	Lipid antioxidants: free radical scavenging <i>versus</i> regulation of enzymatic lipid peroxidation. Journal of Clinical Biochemistry and Nutrition, 2010, 48, 91-95.	1.4	38

#	Article	IF	CITATIONS
19	Correlation between the potency of flavonoids for cytochrome <i>c</i> reduction and inhibition of cardiolipinâ€induced peroxidase activity. BioFactors, 2017, 43, 451-468.	5.4	32
20	Structural characterization of cardiolipin-driven activation of cytochrome c into a peroxidase and membrane perturbation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1057-1068.	2.6	32
21	Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. Journal of Proteomics, 2012, 75, 2934-2949.	2.4	28
22	Purified NADH-cytochrome b5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite. Free Radical Biology and Medicine, 2014, 73, 174-189.	2.9	27
23	Hydrogen sulfide is a reversible inhibitor of the NADH oxidase activity of synaptic plasma membranes. Biochemical and Biophysical Research Communications, 2009, 388, 718-722.	2.1	23
24	L-type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. Journal of Proteomics, 2010, 73, 1502-1510.	2.4	21
25	Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration. Cell Calcium, 2011, 49, 174-183.	2.4	18
26	Reduction of ascorbate free radical by the plasma membrane of synaptic terminals from rat brain. Archives of Biochemistry and Biophysics, 2008, 469, 243-254.	3.0	16
27	Topography of human cytochrome b5/cytochrome b5 reductase interacting domain and redox alterations upon complex formation. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 78-87.	1.0	13
28	Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c. Redox Biology, 2018, 15, 109-114.	9.0	12
29	Regionalization of Plasma Membrane-Bound Flavoproteins of Cerebellar Granule Neurons in Culture by Fluorescence Energy Transfer Imaging. Journal of Fluorescence, 2006, 16, 393-401.	2.5	10
30	Peroxidase-like activity of cytochrome b 5 is triggered upon hemichrome formation in alkaline pH. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 373-378.	2.3	6
31	Structural Features of Cytochrome b5–Cytochrome b5 Reductase Complex Formation and Implications for the Intramolecular Dynamics of Cytochrome b5 Reductase. International Journal of Molecular Sciences, 2022, 23, 118.	4.1	6
32	High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Structure and Function, 2016, 221, 2147-2162.	2.3	5
33	Human erythrocytes exposure to juglone leads to an increase of superoxide anion production associated with cytochrome b5 reductase uncoupling. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148134.	1.0	5
34	Biochemical and anatomical basis of brain dysfunctions caused by cytochrome b5 reductase deficiency or dysregulation. Journal of Neurology and Neuromedicine, 2016, 1, 61-65.	0.9	5
35	The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation. AIMS Molecular Science, 2016, 3, 12-29.	0.5	5
36	Ligand accessibility to heme cytochrome b5 coordinating sphere and enzymatic activity enhancement upon tyrosine ionization. Journal of Biological Inorganic Chemistry, 2019, 24, 317-330.	2.6	4

#	Article	IF	CITATIONS
37	Design and Experimental Evaluation of a Peptide Antagonist against Amyloid β(1–42) Interactions with Calmodulin and Calbindin-D28k. International Journal of Molecular Sciences, 2022, 23, 2289.	4.1	4
38	Evaluation of Sweat-Sampling Procedures for Human Stress-Biomarker Detection. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 178-194.	1.7	4