Emanuela Calcio Gaudino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203958/publications.pdf

Version: 2024-02-01

60 papers 1,916 citations

236925 25 h-index 42 g-index

64 all docs

64 docs citations

64 times ranked 2519 citing authors

#	Article	IF	CITATIONS
1	Mechanochemical Applications of Reactive Extrusion from Organic Synthesis to Catalytic and Active Materials. Molecules, 2022, 27, 449.	3.8	15
2	Lignin as a Natural Carrier for the Efficient Delivery of Bioactive Compounds: From Waste to Health. Molecules, 2022, 27, 3598.	3.8	20
3	Sono- and mechanochemical technologies in the catalytic conversion of biomass. Chemical Society Reviews, 2021, 50, 1785-1812.	38.1	64
4	Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 2021, 26, 798.	3.8	27
5	Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. Applied Sciences (Switzerland), 2021, 11, 4693.	2.5	20
6	Lignin $\hat{a} \in \mathbb{C}$ Derived antioxidants as value-added products obtained under cavitation treatments of the wheat straw processing for sugar production. Journal of Cleaner Production, 2021, 303, 126369.	9.3	33
7	Microwave-Assisted, One-Pot Synthesis of Doxycycline under Heterogeneous Catalysis in Water. Antibiotics, 2021, 10, 1084.	3.7	1
8	Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments. Molecules, 2021, 26, 617.	3.8	34
9	Enabling Technologies and Sustainable Catalysis in Biodiesel Preparation. Catalysts, 2020, 10, 988.	3.5	9
10	Emerging Processing Technologies for the Recovery of Valuable Bioactive Compounds from Potato Peels. Foods, 2020, 9, 1598.	4.3	37
11	Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations. Molecules, 2020, 25, 410.	3.8	7
12	Microwave-Assisted Protocol for Green Functionalization of Thiophenes With a Pd/\hat{l}^2 -Cyclodextrin Cross-Linked Nanocatalyst. Frontiers in Chemistry, 2020, 8, 253.	3.6	12
13	Microwave Irradiation in Micro―Mesoâ€Fluidic Systems; Hybrid Technology has Issued the Challenge. Chemical Record, 2019, 19, 98-117.	5.8	10
14	Microwave-Assisted Dehydrogenative Cross Coupling Reactions in \hat{I}^3 -valerolactone with a Reusable Pd/ \hat{I}^2 -cyclodextrin Crosslinked Catalyst. Molecules, 2019, 24, 288.	3.8	19
15	Microwave-Assisted Reductive Amination with Aqueous Ammonia: Sustainable Pathway Using Recyclable Magnetic Nickel-Based Nanocatalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 5963-5974.	6.7	43
16	From waste biomass to chemicals and energy <i>via</i> microwave-assisted processes. Green Chemistry, 2019, 21, 1202-1235.	9.0	103
17	Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor. RSC Advances, 2018, 8, 7029-7039.	3.6	18
18	Wheat straw lignin extraction with bio-based solvents using enabling technologies. Comptes Rendus Chimie, 2018, 21, 563-571.	0.5	45

#	Article	IF	Citations
19	Ultrasonically improved semi-hydrogenation of alkynes to (Z-)alkenes over novel lead-free Pd/Boehmite catalysts. Ultrasonics Sonochemistry, 2017, 35, 664-672.	8.2	14
20	Selective hydrogenation of alkynes over ppm-level Pd/boehmite/Al ₂ O ₃ beads in a continuous-flow reactor. Catalysis Science and Technology, 2017, 7, 4780-4791.	4.1	15
21	Microwave-Assisted, Green Synthesis of $4(3H)$ -Quinazolinones under CO Pressure in \hat{I}^3 -Valerolactone and Reusable Pd/ \hat{I}^2 -Cyclodextrin Cross-Linked Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 9233-9243.	6.7	22
22	Microwave-assisted, ligand-free, direct C–H arylation of thiophenes in biomass-derived γ-valerolactone. New Journal of Chemistry, 2017, 41, 9210-9215.	2.8	20
23	Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling. Molecules, 2017, 22, 485.	3.8	12
24	Eco-Friendly Physical Activation Methods for Suzuki–Miyaura Reactions. Catalysts, 2017, 7, 98.	3.5	29
25	Heterogeneous Phase Microwave-Assisted Reactions under CO2 or CO Pressure. Molecules, 2016, 21, 253.	3.8	9
26	Microwave-Assisted \hat{I}^3 -Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol. Molecules, 2016, 21, 413.	3.8	28
27	Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein Journal of Organic Chemistry, 2016, 12, 2364-2371.	2.2	19
28	Fast multigram scale microwave-assisted synthesis of vitamin E and C10-, C15-analogues under vacuum. RSC Advances, 2016, 6, 63515-63518.	3.6	3
29	Mechanochemical and sonochemical heterocyclizations. Chemistry of Heterocyclic Compounds, 2016, 52, 856-865.	1.2	7
30	Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances, 2016, 6, 46394-46405.	3.6	113
31	Fuel desulfurization/denitrification via adsorption or extraction: A complementary approach to oxidative treatments. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 2290-2298.	2.3	7
32	Efficient partial hydrogenation of 2-butyne-1,4-diol and other alkynes under microwave irradiation. Chemical Engineering and Processing: Process Intensification, 2016, 110, 220-224.	3.6	14
33	Nucleophilic Substitutions of 6I-O-Monotosyl- \hat{l}^2 -cyclodextrin in a Planetary Ball Mill. ACS Sustainable Chemistry and Engineering, 2016, 4, 919-929.	6.7	24
34	Highly Efficient Microwave-Assisted CO Aminocarbonylation with a Recyclable Pd(II)/TPP- \hat{l}^2 -Cyclodextrin Cross-Linked Catalyst. Organic Process Research and Development, 2015, 19, 499-505.	2.7	25
35	From Lignocellulosic Biomass to Lactic―and Glycolicâ€Acid Oligomers: A Gramâ€Scale Microwaveâ€Assisted Protocol. ChemSusChem, 2015, 8, 1342-1349.	6.8	21
36	The use of power ultrasound for organic synthesis in green chemistry., 2015,, 997-1022.		12

#	Article	IF	Citations
37	Microwave, ultrasound and ball mill procedures for bio-waste valorisation. Green Chemistry, 2015, 17, 684-693.	9.0	78
38	Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors. Ultrasonics Sonochemistry, 2014, 21, 283-288.	8.2	45
39	Glycerol: a solvent and a building block of choice for microwave and ultrasound irradiation procedures. Green Chemistry, 2014, 16, 1056.	9.0	79
40	Fast TiO ₂ -catalyzed direct amidation of neat carboxylic acids under mild dielectric heating. Catalysis Science and Technology, 2014, 4, 1395-1399.	4.1	19
41	A novel SWCNT platform bearing DOTA and β-cyclodextrin units. "One shot―multidecoration under microwave irradiation. Organic and Biomolecular Chemistry, 2014, 12, 4708-4715.	2.8	13
42	Improving the esterification activity of Pseudomonas fluorescens and Burkholderia cepacia lipases via cross-linked cyclodextrin immobilization. RSC Advances, 2014, 4, 45772-45777.	3.6	5
43	Ultrasound-Assisted Oxidative Desulfurization/Denitrification of Liquid Fuels with Solid Oxidants. Energy & Ene	5.1	37
44	Evaluation of nitrogen effect on ultrasound-assisted oxidative desulfurization process. Fuel Processing Technology, 2014, 126, 521-527.	7.2	30
45	On the mechanochemical activation by ultrasound. Chemical Society Reviews, 2013, 42, 7521.	38.1	185
46	A Structurally Diverse Heterocyclic Library by Decoration of Oxcarbazepine Scaffold. Molecules, 2013, 18, 13705-13722.	3.8	4
47	Esterification of Terpene Alcohols Catalyzed by Acidic Brønsted Ionic Liquids. Organic Preparations and Procedures International, 2012, 44, 175-179.	1.3	3
48	Functionalization of Single-Walled Carbon Nanotubes through 1,3-CycloÂaddition of Carbonyl Ylides under Microwave Irradiation. Synlett, 2012, 23, 1459-1462.	1.8	9
49	Reticulated Pd(ii)/Cu(i) cyclodextrin complexes as recyclable green catalyst for Sonogashira alkynylation. Catalysis Science and Technology, 2012, 2, 85-87.	4.1	45
50	Solvent-free chemoselective oxidation of thioethers and thiophenes by mechanical milling. Chemical Communications, 2012, 48, 11632.	4.1	37
51	A green approach to heterogeneous catalysis using ligand-free, metal-loaded cross-linked cyclodextrins. Green Processing and Synthesis, 2012, 1, .	3.4	13
52	Rapid purification/oxidation of multi-walled carbon nanotubes under 300 kHz-ultrasound and microwave irradiation. New Journal of Chemistry, 2011, 35, 915.	2.8	31
53	Efficient Synthetic Protocols in Glycerol under Heterogeneous Catalysis. ChemSusChem, 2011, 4, 1130-1134.	6.8	60
54	A new pilot flow reactor for high-intensity ultrasound irradiation. Application to the synthesis of biodiesel. Ultrasonics Sonochemistry, 2010, 17, 985-989.	8.2	137

#	Article	IF	CITATIONS
55	Intensification of organic reactions with hybrid flow reactors. Chemical Engineering and Processing: Process Intensification, 2010, 49, 930-935.	3.6	17
56	Synthesis of 1-octacosanol and GC-C-IRMS discrimination of samples from different origin. Natural Product Research, 2010, 24, 428-439.	1.8	13
57	A new class of cationic cyclodextrins: synthesis and chemico-physical properties. New Journal of Chemistry, 2010, 34, 2013.	2.8	18
58	Influence of \hat{l}_{\pm} - and \hat{l}_{-} - cyclodextrin lipophilic derivatives on curcumin-loaded SLN. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 391-402.	1.6	28
59	Regulation of HMGCoA Reductase Activity by Policosanol and Octacosadienol, a New Synthetic Analogue of Octacosanol. Lipids, 2009, 44, 907-16.	1.7	56
60	Preparation of Second Generation Ionic Liquids by Efficient Solvent-Free Alkylation of N-Heterocycles with Chloroalkanes. Molecules, 2008, 13, 149-156.	3.8	43