
Giedre Grigelioniene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of <i>GNAS</i> Remethylation During Oogenesis May Be a Cause of Sporadic Pseudohypoparathyroidism Type Ib. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1610-e1619.	1.8	5
2	Expanding the mutation and phenotype spectrum of MYH3-associated skeletal disorders. Npj Genomic Medicine, 2022, 7, 11.	1.7	7
3	Radiologic Features of Type II and Type XI Collagenopathies. Radiographics, 2021, 41, 192-209.	1.4	5
4	Integration of whole genome sequencing into a healthcare setting: high diagnostic rates across multiple clinical entities in 3219 rare disease patients. Genome Medicine, 2021, 13, 40.	3.6	116
5	High diagnostic yield in skeletal ciliopathies using massively parallel genome sequencing, structural variant screening and RNA analyses. Journal of Human Genetics, 2021, 66, 995-1008.	1.1	19
6	Chondrodysplasia and growth failure in children after early hematopoietic stem cell transplantation for nonâ€oncologic disorders. American Journal of Medical Genetics, Part A, 2021, 185, 517-527.	0.7	3
7	Exploring human genetic skeletal disorders provides important insights into skeletogenesis and elucidates basic developmental signaling pathways. EBioMedicine, 2020, 62, 103091.	2.7	0
8	Absence of GP130 cytokine receptor signaling causes extended Stüve-Wiedemann syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	41
9	Defining the clinical phenotype of Saul–Wilson syndrome. Genetics in Medicine, 2020, 22, 857-866.	1.1	11
10	Skeletal ciliopathies: a pattern recognition approach. Japanese Journal of Radiology, 2020, 38, 193-206.	1.0	30
11	SLC4A2 Deficiency Causes a New Type of Osteopetrosis. Journal of Bone and Mineral Research, 2020, 37, 226-235.	3.1	12
12	From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Medicine, 2019, 11, 68.	3.6	88
13	Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nature Medicine, 2019, 25, 583-590.	15.2	86
14	Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics. Nature Genetics, 2018, 50, 657-661.	9.4	18
15	Expanding the Clinical Spectrum of Phenotypes Caused by Pathogenic Variants in <i>PLOD2</i> . Journal of Bone and Mineral Research, 2018, 33, 753-760.	3.1	20
16	A Recurrent De Novo Heterozygous COG4 Substitution Leads to Saul-Wilson Syndrome, Disrupted Vesicular Trafficking, and Altered Proteoglycan Glycosylation. American Journal of Human Genetics, 2018, 103, 553-567.	2.6	58
17	Development of body proportions in achondroplasia: Sitting height, leg length, arm span, and foot length. American Journal of Medical Genetics, Part A, 2018, 176, 1819-1829.	0.7	26
18	Growth in achondroplasia: Development of height, weight, head circumference, and body mass index in a European cohort. American Journal of Medical Genetics, Part A, 2018, 176, 1723-1734.	0.7	42

#	Article	IF	CITATIONS
19	<i>Alu-Alu</i> mediated intragenic duplications in <i>IFT81</i> and <i>MATN3</i> are associated with skeletal dysplasias. Human Mutation, 2018, 39, 1456-1467.	1.1	16
20	Genotype-Phenotype Correlation of PLOD2 Skeletal Dysplasias Using Structural Information. Journal of Bone and Mineral Research, 2018, 33, 1377-1378.	3.1	2
21	A Large Inversion Involving <i>GNAS</i> Exon A/B and All Exons Encoding Gsα Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). Journal of Bone and Mineral Research, 2017, 32, 776-783.	3.1	22
22	Axial spondylometaphyseal dysplasia is also caused by NEK1 mutations. Journal of Human Genetics, 2017, 62, 503-506.	1.1	25
23	Novel mutations in the <i>LRP5</i> gene in patients with Osteoporosisâ€pseudoglioma syndrome. American Journal of Medical Genetics, Part A, 2017, 173, 3132-3135.	0.7	13
24	Novel KIAA0753 mutations extend the phenotype of skeletal ciliopathies. Scientific Reports, 2017, 7, 15585.	1.6	21
25	Tooth agenesis in osteogenesis imperfecta related to mutations in the collagen type I genes. Oral Diseases, 2017, 23, 42-49.	1.5	36
26	Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta $\hat{a} \in $ A retrospective cohort study. PLoS ONE, 2017, 12, e0176466.	1.1	62
27	Spondyloocular Syndrome: Novel Mutations in <i>XYLT2</i> Gene and Expansion of the Phenotypic Spectrum. Journal of Bone and Mineral Research, 2016, 31, 1577-1585.	3.1	43
28	Pathogenenic variant in the <i>COL2A1</i> gene is associated with Spondyloepiphyseal dysplasia type Stanescu. American Journal of Medical Genetics, Part A, 2016, 170, 266-269.	0.7	2
29	Autosomal recessive brachyolmia: early radiological findings. Skeletal Radiology, 2016, 45, 1557-1560.	1.2	4
30	Extending the phenotype of BMPER-related skeletal dysplasias to ischiospinal dysostosis. Orphanet Journal of Rare Diseases, 2016, 11, 1.	1.2	70
31	Analysis of Multiple Families With Single Individuals Affected by Pseudohypoparathyroidism Type Ib (PHP1B) Reveals Only One Novel Maternally Inherited <i>GNAS</i> Deletion. Journal of Bone and Mineral Research, 2016, 31, 796-805.	3.1	31
32	A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach–Nishimura skeletal dysplasia due to pathogenic variants in ALG9. European Journal of Human Genetics, 2016, 24, 198-207.	1.4	29
33	Decreased fracture rate, pharmacogenetics and BMD response in 79 Swedish children with osteogenesis imperfecta types I, III and IV treated with Pamidronate. Bone, 2016, 87, 11-18.	1.4	33
34	Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations. PLoS ONE, 2016, 11, e0150555.	1.1	32
35	<i><scp>SLC26A2</scp></i> disease spectrum in Sweden–Âhigh frequency of recessive multiple epiphyseal dysplasia (<scp>rMED</scp>). Clinical Genetics, 2015, 87, 273-278.	1.0	13
36	Autosomal recessive mutations in the <scp><i>COL2A1</i></scp> gene cause severe spondyloepiphyseal dysplasia. Clinical Genetics, 2015, 87, 496-498.	1.0	9

#	Article	IF	CITATIONS
37	Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta. European Journal of Human Genetics, 2015, 23, 1042-1050.	1.4	126
38	Short Stature in KBG Syndrome: First Responses to Growth Hormone Treatment. Hormone Research in Paediatrics, 2015, 83, 361-364.	0.8	24
39	SAT0493â€Farber Disease: First Natural History Cohort Demonstrates a Broad Clinical Spectrum with Implications for Juvenile Idiopathic Arthritis Patients. Annals of the Rheumatic Diseases, 2015, 74, 838.3-839.	0.5	1
40	Further delineation of the KBG syndrome phenotype caused by ANKRD11 aberrations. European Journal of Human Genetics, 2015, 23, 1176-1185.	1.4	67
41	Identification of three novel <i>FGF16</i> mutations in Xâ€inked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Molecular Genetics & Genomic Medicine, 2014, 2, 402-411.	0.6	17
42	A Case with Bladder Exstrophy and Unbalanced X Chromosome Rearrangement. European Journal of Pediatric Surgery, 2014, 24, 353-359.	0.7	5
43	Different mutations in <i>PDE4D</i> associated with developmental disorders with mirror phenotypes. Journal of Medical Genetics, 2014, 51, 45-54.	1.5	57
44	Neu-Laxova Syndrome Is a Heterogeneous Metabolic Disorder Caused by Defects in Enzymes of the L-Serine Biosynthesis Pathway. American Journal of Human Genetics, 2014, 95, 285-293.	2.6	110
45	Autosomal dominant brachyolmia in a large Swedish family: Phenotypic spectrum and natural course. American Journal of Medical Genetics, Part A, 2014, 164, 1635-1641.	0.7	6
46	FAM111A Mutations Result in Hypoparathyroidism and Impaired Skeletal Development. American Journal of Human Genetics, 2013, 92, 990-995.	2.6	114
47	Molecular and clinical delineation of the 17q22 microdeletion phenotype. European Journal of Human Genetics, 2013, 21, 1085-1092.	1.4	11
48	The phenotype range of achondrogenesis 1A. , 2013, 161A, n/a-n/a.		4
49	A novel 13 base pair insertion in the sonic hedgehog ZRS limb enhancer (ZRS/ <i>LMBR1</i>) causes preaxial polydactyly with triphalangeal thumb. Human Mutation, 2012, 33, 1063-1066.	1.1	29
50	Extending the phenotype of lethal skeletal dysplasia type al Gazali. American Journal of Medical Genetics, Part A, 2011, 155, 1404-1408.	0.7	1
51	Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. Journal of Medical Genetics, 2010, 47, 704-709.	1.5	58
52	Clinical and molecular characterization of duplications encompassing the human <i>SHOX</i> gene reveal a variable effect on stature. American Journal of Medical Genetics, Part A, 2009, 149A, 1407-1414.	0.7	46
53	Mutations in SPINT2 Cause a Syndromic Form of Congenital Sodium Diarrhea. American Journal of Human Genetics, 2009, 84, 188-196.	2.6	110
54	Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus. BMC Genomics, 2007, 8, 16.	1.2	67

#	Article	IF	CITATIONS
55	Metacarpophalangeal pattern profile analysis in leriâ€weill dyschondrosteosis. Acta Radiologica, 2005, 46, 200-207.	0.5	4
56	Genetics of Achondroplasia and Hypochondroplasia. , 2004, , 349-359.		0
57	Mesomelic and rhizomelic short stature: The phenotype of combined Leri-Weill dyschondrosteosis and achondroplasia or hypochondroplasia. American Journal of Medical Genetics Part A, 2003, 116A, 61-65.	2.4	16
58	Analysis of short stature homeobox-containing gene (SHOX) and auxological phenotype in dyschondrosteosis and isolated Madelung deformity. Human Genetics, 2001, 109, 551-558.	1.8	60
59	Mutations in short stature homeobox containing gene (SHOX) in dyschondrosteosis but not in hypochondroplasia. Human Genetics, 2000, 107, 145-149.	1.8	37
60	Estrogens and human growth. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74, 383-386.	1.2	25
61	Asn540Lys mutation in fibroblast growth factor receptor 3 and phenotype in hypochondroplasia. Acta Paediatrica, International Journal of Paediatrics, 2000, 89, 1072-1076.	0.7	9
62	Demonstration of Estrogen Receptor-Î ² Immunoreactivity in Human Growth Plate Cartilage. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 370-373.	1.8	113
63	Demonstration of Estrogen Receptor-Â Immunoreactivity in Human Growth Plate Cartilage. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 370-373.	1.8	99
64	A novel missense mutation Ile538Val in the fibroblast growth factor receptor 3 in hypochondroplasia. Human Mutation, 1998, 11, 333-333.	1.1	2
65	Cerebrospinal Fluid of Newborn Infants Contains a Deglycosylated Form of the Intermediate Filament Nestin. Pediatric Research, 1996, 40, 809-814.	1.1	15