List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203352/publications.pdf Version: 2024-02-01

SHU-ΟΙΛΝΟ ΙΛΟ

#	Article	IF	CITATIONS
1	A new aluminium-ion battery with high voltage, high safety and low cost. Chemical Communications, 2015, 51, 11892-11895.	2.2	411
2	High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. ACS Nano, 2017, 11, 469-477.	7.3	388
3	A Novel Aluminumâ€ion Battery: Al/AlCl ₃ â€{EMIm]Cl/Ni ₃ S ₂ @Graphene. Advanced Energy Materials, 2016, 6, 1600137.	10.2	365
4	A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Scientific Reports, 2013, 3, 3383.	1.6	286
5	Flexible Stable Solidâ€&tate Alâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1806799.	7.8	177
6	Rechargeable ultrahigh-capacity tellurium–aluminum batteries. Energy and Environmental Science, 2019, 12, 1918-1927.	15.6	172
7	High-performance p-Cu ₂ O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3758-3768.	15.6	170
8	Microspheric Na ₂ Ti ₃ O ₇ consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge–discharge rates. Nanoscale, 2013, 5, 594-599.	2.8	167
9	Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chemical Communications, 2016, 52, 10427-10430.	2.2	167
10	Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. Journal of Materials Chemistry, 2012, 22, 7291.	6.7	157
11	A long-life rechargeable Al ion battery based on molten salts. Journal of Materials Chemistry A, 2017, 5, 1282-1291.	5.2	153
12	A rechargeable Al-ion battery: Al/molten AlCl ₃ –urea/graphite. Chemical Communications, 2017, 53, 2331-2334.	2.2	147
13	Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chemical Reviews, 2021, 121, 4903-4961.	23.0	147
14	An industrialized prototype of the rechargeable Al/AlCl 3 -[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon, 2016, 109, 276-281.	5.4	129
15	Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3084-3090.	5.2	128
16	Novel metallurgical process for titanium production. Journal of Materials Research, 2006, 21, 2172-2175.	1.2	117
17	Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy and Environmental Science, 2013, 6, 2134.	15.6	104
18	Hierarchically Plasmonic Z-Scheme Photocatalyst of Ag/AgCl Nanocrystals Decorated Mesoporous Single-Crystalline Metastable Bi ₂₀ TiO ₃₂ Nanosheets. Journal of Physical Chemistry C, 2013, 117, 5132-5141.	1.5	103

#	Article	IF	CITATIONS
19	Flowerâ€ŀike Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminumâ€ŀon Batteries. ChemSusChem, 2018, 11, 709-715.	3.6	101
20	A Novel Ultrafast Rechargeable Multiâ€lons Battery. Advanced Materials, 2017, 29, 1606349.	11.1	97
21	Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. Journal of Alloys and Compounds, 2007, 438, 243-246.	2.8	96
22	Development of an Inert Anode for Electrowinning in Calcium Chloride–Calcium Oxide Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 74-79.	1.0	96
23	Single crystalline Na ₂ Ti ₃ O ₇ rods as an anode material for sodium-ion batteries. RSC Advances, 2013, 3, 1041-1044.	1.7	95
24	Cobalt-bilayer catalyst decorated Ta3N5 nanorod arrays as integrated electrodes for photoelectrochemical water oxidation. Energy and Environmental Science, 2013, 6, 3322.	15.6	94
25	Three-dimensional Z-scheme AgCl/Ag/Ĵ³-TaON heterostructural hollow spheres for enhanced visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2013, 142-143, 579-589.	10.8	89
26	A novel dual-graphite aluminum-ion battery. Energy Storage Materials, 2018, 12, 119-127.	9.5	86
27	Ordered WO _{3â^'x} nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. Chemical Communications, 2018, 54, 1343-1346.	2.2	86
28	Cu ₃ P as a novel cathode material for rechargeable aluminum-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8368-8375.	5.2	85
29	Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Materials, 2018, 13, 103-111.	9.5	81
30	Direct Conversion of Greenhouse Gas CO ₂ into Graphene via Molten Salts Electrolysis. ChemSusChem, 2016, 9, 588-594.	3.6	80
31	Mg–Ti co-doping behavior of porous LiFePO ₄ microspheres for high-rate lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 17021-17028.	5.2	80
32	Ultraâ€Lightweight 3D Carbon Current Collectors: Constructing All arbon Electrodes for Stable and High Energy Density Dualâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1801439.	10.2	80
33	Bi2O3 quantum-dot decorated nitrogen-doped Bi3NbO7 nanosheets: in situ synthesis and enhanced visible-light photocatalytic activity. CrystEngComm, 2012, 14, 5923.	1.3	71
34	Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance. ACS Nano, 2020, 14, 3469-3476.	7.3	70
35	Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides. Electrochimica Acta, 2010, 55, 7126-7133.	2.6	69
36	Capture and electrochemical conversion of CO ₂ to ultrathin graphite sheets in CaCl ₂ -based melts. Journal of Materials Chemistry A, 2015, 3, 21211-21218.	5.2	68

#	Article	IF	CITATIONS
37	In situ chemical reduction of the Ta3N5 quantum dots coupled TaON hollow spheres heterojunction photocatalyst for water oxidation. Journal of Materials Chemistry, 2012, 22, 21972.	6.7	65
38	Chromium-doped bismuth titanate nanosheets as enhanced visible-light photocatalysts with a high percentage of reactive {110} facets. Journal of Materials Chemistry, 2011, 21, 7296.	6.7	63
39	A novel three-dimensional carbonized PANI1600@CNTs network for enhanced enzymatic biofuel cell. Biosensors and Bioelectronics, 2018, 101, 60-65.	5.3	61
40	High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes. Nanoscale, 2019, 11, 12537-12546.	2.8	61
41	Nickel Phosphide Nanosheets Supported on Reduced Graphene Oxide for Enhanced Aluminum-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 6004-6012.	3.2	61
42	Metal–Organic Framework-Derived Co ₃ O ₄ @MWCNTs Polyhedron as Cathode Material for a High-Performance Aluminum-Ion Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16200-16208.	3.2	55
43	Gel electrolytes with a wide potential window for high-rate Al-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20348-20356.	5.2	54
44	Stable Highâ€Capacity Organic Aluminum–Porphyrin Batteries. Advanced Energy Materials, 2021, 11, 2101446.	10.2	54
45	Electrochemically assembling of a porous nano-polyaniline network in a reverse micelle and its application in a supercapacitor. Journal of Materials Chemistry, 2011, 21, 9027.	6.7	53
46	A Rechargeable Al–Te Battery. ACS Applied Energy Materials, 2018, 1, 4924-4930.	2.5	51
47	Exfoliation Mechanism of Graphite Cathode in Ionic Liquids. ACS Applied Materials & Interfaces, 2017, 9, 36702-36707.	4.0	50
48	Active cyano groups to coordinate AlCl2+ cation for rechargeable aluminum batteries. Energy Storage Materials, 2020, 33, 250-257.	9.5	49
49	Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production. RSC Advances, 2012, 2, 10330.	1.7	48
50	Electrochemical deposition of carbon in LiCl–NaCl–Na2CO3 melts. Carbon, 2016, 98, 649-657.	5.4	48
51	Dual-phase MoC-Mo2C nanosheets prepared by molten salt electrochemical conversion of CO2 as excellent electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2021, 90, 106533.	8.2	48
52	Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochimica Acta, 2010, 55, 7016-7020.	2.6	46
53	Preparation of Titanium Deposit in Chloride Melts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2011, 42, 1181-1187.	1.0	45
54	Electrochemical deposition of carbon nanotubes from CO ₂ in CaCl ₂ –NaCl-based melts. Journal of Materials Chemistry A, 2017, 5, 6219-6225.	5.2	45

#	Article	IF	CITATIONS
55	Direct electrochemistry and bioelectrocatalysis of glucose oxidase in CS/CNC film and its application in glucose biosensing and biofuel cells. RSC Advances, 2017, 7, 4572-4579.	1.7	44
56	Electrochemical Conversion of CO ₂ into Negative Electrode Materials for Liâ€lon Batteries. ChemElectroChem, 2015, 2, 224-230.	1.7	43
57	The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl ₃ –urea liquid electrolyte. RSC Advances, 2017, 7, 32288-32293.	1.7	41
58	Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode. Chemical Engineering Journal, 2019, 363, 270-277.	6.6	41
59	Ternary AlCl ₃ -Urea-[EMIm]Cl Ionic Liquid Electrolyte for Rechargeable Aluminum-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3093-A3100.	1.3	40
60	Room temperature solid state dual-ion batteries based on gel electrolytes. Journal of Materials Chemistry A, 2018, 6, 4313-4323.	5.2	40
61	Direct Preparation of Titanium Alloys from Ti-Bearing Blast Furnace Slag. Journal of the Electrochemical Society, 2017, 164, D511-D516.	1.3	39
62	Alternate Storage of Opposite Charges in Multisites for Highâ€Energyâ€Density Al–MOF Batteries. Advanced Materials, 2022, 34, e2110109.	11.1	39
63	Sb ₂ Se ₃ nanorods with N-doped reduced graphene oxide hybrids as high-capacity positive electrode materials for rechargeable aluminum batteries. Nanoscale, 2019, 11, 16437-16444.	2.8	38
64	A review on liquid metals as cathodes for molten salt/oxide electrolysis. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1588-1598.	2.4	38
65	Self-supporting and high-loading hierarchically porous Co-P cathode for advanced Al-ion battery. Chemical Engineering Journal, 2020, 389, 124370.	6.6	38
66	Modified separators for rechargeable high-capacity selenium-aluminium batteries. Chemical Engineering Journal, 2020, 385, 123452.	6.6	36
67	The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 906-913.	1.0	35
68	A green electrochemical transformation of inferior coals to crystalline graphite for stable Li-ion storage. Journal of Materials Chemistry A, 2019, 7, 7533-7540.	5.2	35
69	Facile synthesis of Ni ₁₁ (HPO ₃) ₈ (OH) ₆ /rGO nanorods with enhanced electrochemical performance for aluminum-ion batteries. Nanoscale, 2018, 10, 21284-21291.	2.8	34
70	The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discussions, 2016, 190, 421-432.	1.6	33
71	High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect. NPG Asia Materials, 2015, 7, e182-e182.	3.8	32
72	Green and sustainable molten salt electrochemistry for the conversion of secondary carbon pollutants to advanced carbon materials. Journal of Materials Chemistry A, 2021, 9, 14119-14146.	5.2	32

#	Article	IF	CITATIONS
73	Carbon-modified bismuth titanate nanorods with enhanced visible-light-driven photocatalytic property. CrystEngComm, 2011, 13, 4735.	1.3	30
74	Aluminumâ€lon Asymmetric Supercapacitor Incorporating Carbon Nanotubes and an lonic Liquid Electrolyte: Al/AlCl ₃ â€{EMIm]Cl/CNTs. Energy Technology, 2016, 4, 1112-1118.	1.8	30
75	The molten chlorides for aluminum-graphite rechargeable batteries. Journal of Alloys and Compounds, 2020, 821, 153285.	2.8	30
76	Electrochemical dissolution behavior of conductive TiCxO1–x solid solutions. Pure and Applied Chemistry, 2010, 82, 1691-1699.	0.9	29
77	Coral-Like TeO ₂ Microwires for Rechargeable Aluminum Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 2416-2422.	3.2	29
78	Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chemical Engineering Journal, 2021, 421, 127792.	6.6	28
79	An investigation into the electrochemical recovery of rare earth ions in a CsCl-based molten salt. Journal of Hazardous Materials, 2011, 189, 821-826.	6.5	27
80	The Cathodic Behavior of Ti(III) Ion in a NaCl-2CsCl Melt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 804-810.	1.0	27
81	The Effects of Anions Behaviors on Electrochemical Properties of Al/Graphite Rechargeable Aluminum-Ion Battery via Molten AlCl ₃ -NaCl Liquid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A3292-A3302.	1.3	27
82	Shape-Controlled Synthesis of Ultrafine Molybdenum Crystals via Salt-Assisted Reduction of MoO ₂ with H ₂ . Journal of Physical Chemistry C, 2018, 122, 10231-10239.	1.5	27
83	Production of AlCrNbTaTi High Entropy Alloy via Electro-Deoxidation of Metal Oxides. Journal of the Electrochemical Society, 2018, 165, D574-D579.	1.3	27
84	All-carbon positive electrodes for stable aluminium batteries. Journal of Energy Chemistry, 2020, 42, 17-26.	7.1	27
85	Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 660-665.	2.4	26
86	Single-crystal and hierarchical VSe ₂ as an aluminum-ion battery cathode. Sustainable Energy and Fuels, 2019, 3, 2717-2724.	2.5	26
87	Electrochemical graphitization conversion of CO2 through soluble NaVO3 homogeneous catalyst in carbonate molten salt. Electrochimica Acta, 2020, 331, 135461.	2.6	26
88	Nonmetal Current Collectors: The Key Component for Highâ€Energyâ€Density Aluminum Batteries. Advanced Materials, 2020, 32, e2001212.	11.1	26
89	Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis. Journal of Cleaner Production, 2020, 261, 121314.	4.6	26
90	Al-Based porous coordination polymer derived nanoporous carbon for immobilization of glucose oxidase and its application in glucose/O ₂ biofuel cell and biosensor. RSC Advances, 2017, 7, 11872-11879.	1.7	25

#	Article	IF	CITATIONS
91	Bismuth ferrite: an abnormal perovskite with electrochemical extraction of ions from A site. Journal of Materials Chemistry A, 2019, 7, 12176-12190.	5.2	25
92	Liquid gallium as long cycle life and recyclable negative electrode for Al-ion batteries. Chemical Engineering Journal, 2020, 391, 123594.	6.6	25
93	3D flower-like NaHTi ₃ O ₇ nanotubes as high-performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 16528-16534.	5.2	24
94	A nitrogen-doped graphene cathode for high-capacitance aluminum-ion hybrid supercapacitors. New Journal of Chemistry, 2018, 42, 15684-15691.	1.4	24
95	The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 7021-7028.	1.3	24
96	Applying Co ₃ O ₄ @nanoporous Carbon to Nonenzymatic Glucose Biofuel Cell and Biosensor. Electroanalysis, 2018, 30, 525-532.	1.5	23
97	Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode. Journal of Energy Chemistry, 2020, 42, 43-48.	7.1	23
98	Hierarchical N-doped porous carbon hosts for stabilizing tellurium in promoting Al-Te batteries. Journal of Energy Chemistry, 2021, 57, 378-385.	7.1	23
99	Electrochemically depositing titanium(<scp>iii</scp>) ions at liquid tin in a NaCl–KCl melt. RSC Advances, 2015, 5, 62235-62240.	1.7	22
100	NiCo ₂ S ₄ Nanosheet with Hexagonal Architectures as an Advanced Cathode for Al-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3504-A3509.	1.3	21
101	Cellulose-derived flake graphite as positive electrodes for Al-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3561-3568.	2.5	21
102	Electrocatalysis for Continuous Multiâ€Step Reactions in Quasiâ€Solidâ€State Electrolytes Towards Highâ€Energy and Longâ€Life Aluminum–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
103	Self-assembled amorphous manganese oxide/hydroxide spheres via multi-phase electrochemical interactions in reverse micelle electrolytes and their capacitive behavior. Journal of Materials Chemistry A, 2013, 1, 5136.	5.2	20
104	The Equilibrium between Titanium Ions and Metallic Titanium in the Molten Binary Mixtures of LiCl. Electrochemistry, 2014, 82, 1047-1051.	0.6	20
105	Electrochemical Metallurgy in CaCl ₂ -CaO Melts on the Basis of TiO ₂ ·RuO ₂ Inert Anode. Journal of the Electrochemical Society, 2016, 163, E33-E38.	1.3	20
106	Hierarchical Flower-Like MoS ₂ Microspheres and Their Efficient Al Storage Properties. Journal of Physical Chemistry C, 2019, 123, 26794-26802.	1.5	20
107	Cu-Al Composite as the Negative Electrode for Long-life Al-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3539-A3545.	1.3	20
108	A Rechargeable Al/Graphite Battery Based on AlCl ₃ /1â€butylâ€3â€methylimidazolium Chloride Ionic Liquid Electrolyte. ChemistrySelect, 2019, 4, 3018-3024.	0.7	20

#	Article	IF	CITATIONS
109	A cobalt-based metal–organic framework and its derived material as sulfur hosts for aluminum–sulfur batteries with the chemical anchoring effect. Physical Chemistry Chemical Physics, 2021, 23, 10326-10334.	1.3	20
110	Al homogeneous deposition induced by N-containing functional groups for enhanced cycling stability of Al-ion battery negative electrode. Nano Research, 2021, 14, 646-653.	5.8	19
111	A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552.	5.6	19
112	Photo-electrochemical enhanced mechanism enables a fast-charging and high-energy aqueous Al/MnO2 battery. Energy Storage Materials, 2022, 45, 586-594.	9.5	19
113	Stable Quasiâ€5olidâ€5tate Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	11.1	19
114	Experimental and firstâ€principles study of Ti–C–O system: Interplay of thermodynamic and structural properties. Journal of the American Ceramic Society, 2017, 100, 2253-2265.	1.9	17
115	A dual-protection strategy using CMK-3 coated selenium and modified separators for high-energy Al–Se batteries. Inorganic Chemistry Frontiers, 2021, 8, 1030-1038.	3.0	16
116	Three-dimensional Co ₃ O ₄ @MWNTs nanocomposite with enhanced electrochemical performance for nonenzymatic glucose biosensors and biofuel cells. Royal Society Open Science, 2017, 4, 170991.	1.1	15
117	Anodic Dissolution of Titanium Oxycarbide TiCxO1-x with Different O/C Ratio. Journal of the Electrochemical Society, 2019, 166, E22-E28.	1.3	15
118	Enhanced electrodeposition and separation of metallic Cr from soluble K2CrO4 on a liquid Zn cathode. Journal of Energy Chemistry, 2020, 40, 204-211.	7.1	15
119	Stable wide-temperature and low volume expansion Al batteries: Integrating few-layer graphene with multifunctional cobalt boride nanocluster as positive electrode. Nano Research, 2020, 13, 419-429.	5.8	15
120	Design Strategies of Highâ€Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. Small, 2022, 18, .	5.2	15
121	The synthesis of sulfur-doped graphite nanostructures by direct electrochemical conversion of CO2 in CaCl2NaCl CaO Li2SO4. Carbon, 2019, 144, 805-814.	5.4	14
122	Mechano-electrochemical perspectives on flexible lithium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1019-1036.	2.4	14
123	Solubility of Oxide Ion in Molten Chloride and Carbonate Containing Li, Na, K and/or Ca Added with Li ₂ 0 or CaO. Journal of the Electrochemical Society, 2016, 163, E300-E304.	1.3	13
124	Electrochemical Deposition of Carbon Prepared on Cu and Ni Cathodes in CaCl ₂ -LiCl Melts. Journal of the Electrochemical Society, 2017, 164, D248-D252.	1.3	13
125	Direct Production of Fe and Fe-Ni Alloy via Molten Oxides Electrolysis. Journal of the Electrochemical Society, 2017, 164, E113-E116.	1.3	13
126	Production of Ti–Fe alloys <i>via</i> molten oxide electrolysis at a liquid iron cathode. RSC Advances, 2018, 8, 17575-17581.	1.7	13

#	Article	IF	CITATIONS
127	A high-performance dual-ion cell utilizing Si nanosphere@graphene anode. Electrochimica Acta, 2018, 282, 946-954.	2.6	13
128	Improved USTB Titanium Production with a Ti ₂ CO Anode Formed by Casting. Journal of the Electrochemical Society, 2019, 166, E226-E230.	1.3	13
129	Surface Evolution of Aluminum Electrodes in Non-Aqueous Aluminum Batteries. Journal of the Electrochemical Society, 2020, 167, 130530.	1.3	13
130	Advances in Molten Salt Synthesis of Nonâ€oxide Materials. Energy and Environmental Materials, 2023, 6, .	7.3	13
131	Structural and Thermodynamic Properties of TiC x N y O z Solid Solution: Experimental Study and First-Principles Approaches. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4721-4731.	1.1	12
132	Electrochemical Behavior of Fe (III) Ion in CaO-MgO-SiO ₂ -Al ₂ O ₃ -NaF-Fe ₂ O ₃ Melts at 1673 K. Journal of the Electrochemical Society, 2016, 163, D710-D714.	1.3	12
133	Pyrophoric behaviour of ultrafine Mo powder. Corrosion Science, 2017, 128, 85-93.	3.0	12
134	Thick electrodes upon biomass-derivative carbon current collectors: High-areal capacity positive electrodes for aluminum-ion batteries. Electrochimica Acta, 2019, 323, 134805.	2.6	12
135	Direct electrochemical N-doping to carbon paper in molten LiCl-KCl-Li3N. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1687-1694.	2.4	12
136	Self-supporting and dual-active 3D Co-S nanosheets constructed by ligand replacement reaction from MOF for rechargeable Al battery. Journal of Energy Chemistry, 2022, 69, 35-43.	7.1	12
137	Solid–Liquid Coexisting LiNO ₃ Electrolyte for Extremely Stable Lithium Metal Anodes on a Bare Cu Foil. ACS Sustainable Chemistry and Engineering, 2020, 8, 706-713.	3.2	11
138	A 4D x-ray computer microtomography for high-temperature electrochemistry. Science Advances, 2022, 8, eabm5678.	4.7	11
139	High Specific Capacitance Based on N-Doped Microporous Carbon in [EMIm]Al _x Cl _y Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2017, 164, A3319-A3325.	1.3	10
140	An investigation into the anodic behavior of TiB2 in a CaCl2-based molten salt. Corrosion Science, 2021, 178, 109089.	3.0	10
141	Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2 powders with the assistance of Mo nuclei. International Journal of Hydrogen Energy, 2020, 45, 1435-1443.	3.8	9
142	Rapid Electrodeposition of Ti on a Liquid Zn Cathode from a Consumable Casting TiC _{0.5} O _{0.5} Anode. Journal of the Electrochemical Society, 2020, 167, 123502.	1.3	9
143	Quantificational 4D Visualization of Industrial Electrodeposition. Advanced Science, 2021, 8, e2101373.	5.6	9
144	Graphene-encapsulated selenium@polyaniline nanowires with three-dimensional hierarchical architecture for high-capacity aluminum–selenium batteries. Journal of Materials Chemistry A, 2022, 10, 15146-15154.	5.2	9

#	Article	IF	CITATIONS
145	The corrosion behavior of a Ni0.91Cr0.04Cu0.05 anode for the electroreduction of Fe2O3 in molten NaOH. Journal of Alloys and Compounds, 2018, 769, 977-982.	2.8	8
146	A strategy for massively suppressing the shuttle effect in rechargeable Al–Te batteries. Inorganic Chemistry Frontiers, 2020, 7, 4000-4009.	3.0	8
147	Rechargeable High-Capacity Antimony-Aluminum Batteries. Journal of the Electrochemical Society, 2020, 167, 080541.	1.3	8
148	Electrochemical behavior of NiCl ₂ /Ni in acidic AlCl ₃ -based ionic liquid electrolyte. Inorganic Chemistry Frontiers, 2020, 7, 1909-1917.	3.0	8
149	Initial Electrode Kinetics of Anion Intercalation and Deâ€intercalation in Nonaqueous Alâ€Graphite Batteries â€. Chinese Journal of Chemistry, 2021, 39, 157-164.	2.6	8
150	Stable and low-voltage-hysteresis zinc negative electrode promoting aluminum dual-ion batteries. Chemical Engineering Journal, 2022, 430, 132743.	6.6	8
151	Clean preparation of V2O3 by one-step molten salt electrochemical reduction of soluble NaVO3. Separation and Purification Technology, 2022, 285, 120346.	3.9	8
152	Production of Titanium Powder by Sodiothermic Reduction in CaCl2 Molten Salts. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1750-1756.	1.0	7
153	Ni0.36Al0.10Cu0.30Fe0.24 Metallic Inert Anode for the Electrochemical Production of Fe-Ni Alloy in Molten K2CO3-Na2CO3. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 3424-3431.	1.0	7
154	Sustainable One-Step Conversion of Soluble NaVO ₃ into CaV ₂ O ₄ through Molten Salt Electrolysis. Journal of the Electrochemical Society, 2019, 166, E407-E411.	1.3	7
155	Sb ₂ Te ₃ Hexagonal Nanosheets as High-Capacity Positive Materials for Rechargeable Aluminum Batteries. ACS Applied Energy Materials, 2020, 3, 12635-12643.	2.5	7
156	Preparation and characteristics of Nb-doped indium tin oxide thin films by RF magnetron sputtering. Optoelectronics Letters, 2012, 8, 460-463.	0.4	6
157	A Convenient Electrochemical Method for Preparing Carbon Nanotubes Filled with Amorphous Boron. Journal of the Electrochemical Society, 2018, 165, E879-E882.	1.3	6
158	In Situ Time-Resolved X-ray Absorption Fine Structure and Small Angle X-ray Scattering Revealed an Unexpected Phase Structure Transformation during the Growth of Nickel Phosphide Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 16397-16405.	1.5	6
159	Depolarization Behavior of Ti Deposition at Liquid Metal Cathodes in a NaCl-KCl-KF Melt. Journal of the Electrochemical Society, 2019, 166, E401-E406.	1.3	6
160	Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries. Ionics, 2020, 26, 3351-3358.	1.2	6
161	A route for producing nano-CaRuO ₃ perovskite by combusting precursors prepared using reverse micelle synthesis. Nanotechnology, 2009, 20, 085606.	1.3	5
162	Pivot roles of noble metal in single-phase TaXzON (0 < Z ≤0.001) and heterostructured XÎ′/TaXzâ^'Î′ON (X = transfer for hydrogen production. Journal of Materials Chemistry A, 2013, 1, 5394.) Tj ETQq0 (5.2	0 0 rgBT /Over 5

#	Article	IF	CITATIONS
163	Electrochemically Exfoliating Graphite Cathode to N-Doped Graphene Analogue and Its Excellent Al Storage Performance. Journal of the Electrochemical Society, 2019, 166, A1738-A1744.	1.3	5
164	Cobalt sulfides/carbon nanohybrids: a novel biocatalyst for nonenzymatic glucose biofuel cells and biosensors. RSC Advances, 2019, 9, 32898-32905.	1.7	5
165	N-doped mixed Co, Ni-oxides with petal structure as effective catalysts for hydrogen and oxygen evolution by water splitting. RSC Advances, 2021, 11, 1022-1029.	1.7	4
166	Modified Al negative electrode for stable high-capacity Al—Te batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 896-904.	2.4	4
167	Facile preparation of metallic vanadium from consumable V2CO solid solution by molten salt electrolysis. Separation and Purification Technology, 2022, 295, 121361.	3.9	4
168	Ultraâ€High Temperature Molten Oxide Electrochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
169	A universal study of liquid metal cathodes for direct extraction of titanium within a closed loop. Journal of Cleaner Production, 2022, 368, 133135.	4.6	4
170	Facile Electrochemical Preparation of Al-Sm Alloys in Molten Calcium Chloride. Journal of the Electrochemical Society, 2018, 165, E616-E621.	1.3	3
171	Self-Supporting Dendritic Copper Porous Film Inducing the Lateral Growth of Metallic Lithium for Highly Stable Li Metal Battery. Journal of the Electrochemical Society, 2019, 166, A4073-A4079.	1.3	3
172	Electrocatalysis for Continuous Multiâ€Step Reactions in Quasiâ€Solidâ€State Electrolytes Towards Highâ€Energy and Longâ€Life Aluminum–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	3
173	Electrochemical Behaviors of Consumable Ti ₂ CO@Al ₂ O ₃ Anode for Ti Extraction by USTB Process. Journal of the Electrochemical Society, 2021, 168, 103508.	1.3	2
174	Biosorption of Pb(II) from aqueous solution using modified wheat straw. , 2011, , .		1
175	Titanium production through electrolysis of titanium oxycarbide consumable anode—the USTB process. , 2020, , 315-329.		1
176	Synthesis of Nano-Sized Tantalum Nitrides with Various Morphology. , 0, , 37-41.		1
177	Ultraâ€High Temperature Molten Oxide Electrochemistry. Angewandte Chemie, 2022, 134, .	1.6	1
178	Removal of cadmium from aqueous solution by garlic peel. , 2013, , .		0
179	Fast removal of dyes from wastewater by combinatorial treatment by biosorption and visible light photodegradation. , 2013, , .		0