Ryota Shimizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203340/publications.pdf

Version: 2024-02-01

623734 552781 37 691 14 26 citations g-index h-index papers 37 37 37 789 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Drastic Reduction of the Solid Electrolyte–Electrode Interface Resistance via Annealing in Battery Form. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2703-2710.	8.0	9
2	Synthesis of High-Entropy Layered Oxide Epitaxial Thin Films: LiCr _{1/6} Mn _{1/6} E _{1/6} Co _{1/6} Ni _{1/6} Cu _{1/6} <td>ub30<sut< td=""><td>ɔ>2͡द्र/sub>.</td></sut<></td>	ub 30 <sut< td=""><td>ɔ>2͡द्र/sub>.</td></sut<>	ɔ>2͡द्र/sub>.
3	Repeatable Photoinduced Insulator-to-Metal Transition in Yttrium Oxyhydride Epitaxial Thin Films. Chemistry of Materials, 2022, 34, 3616-3623.	6.7	8
4	Tuning of Bayesian optimization for materials synthesis: simulation of the one-dimensional case. Science and Technology of Advanced Materials Methods, 2022, 2, 119-128.	1.3	2
5	Tuning the Schottky Barrier Height at the Interfaces of Metals and Mixed Conductors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15746-15754.	8.0	10
6	Relaxation of the Interface Resistance between Solid Electrolyte and 5 V-Class Positive Electrode. Nano Letters, 2021, 21, 5572-5577.	9.1	7
7	Epitaxial Growth of EuF2 and EuO Thin Films Based on Spontaneous Anion Diffusion from Substrates. Crystal Growth and Design, 2021, 21, 4468-4472.	3.0	O
8	Clean Solid–Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5861-5865.	8.0	5
9	lonic Rectification across Ionic and Mixed Conductor Interfaces. Nano Letters, 2021, 21, 10086-10091.	9.1	1
10	Bayesian sparse modeling of extended x-ray absorption fine structure to determine interstitial oxygen positions in yttrium oxyhydride epitaxial thin film. AIP Advances, $2021,11,\ldots$	1.3	2
11	Impact of Surface Roughness on Recrystallization of an α-Al2O3(001) Single Crystal to α-AlO(OH) Diaspore Microcrystals. ACS Omega, 2020, 5, 23520-23523.	3.5	O
12	Autonomous materials synthesis by machine learning and robotics. APL Materials, 2020, 8, .	5.1	69
13	Epitaxial Thin Film Growth of Europium Dihydride. Crystal Growth and Design, 2020, 20, 5903-5907.	3.0	5
14	Effects of Anisotropy in Rutile TiO ₂ on the Performance of Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 8338-8343.	5.1	20
15	Hole Accumulation at the Grain Boundary Enhances Water Oxidation at α-Fe ₂ O ₃ Electrodes under a Microwave Electric Field. Journal of Physical Chemistry C, 2020, 124, 7749-7759.	3.1	10
16	Bayesian statistics-based analysis of AC impedance spectra. AIP Advances, 2020, 10, .	1.3	3
17	Metal Hydrides: Epitaxial Growth and Electronic Properties. Journal of the Physical Society of Japan, 2020, 89, 051012.	1.6	6
18	Impact of the Crystal Orientation of Positive Electrodes on the Interface Resistance across a Solid Electrolyte and Electrode. ACS Applied Energy Materials, 2020, 3, 6416-6421.	5.1	14

#	Article	IF	CITATIONS
19	Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces. Applied Physics Letters, 2020, 116, .	3.3	18
20	Low Interface Resistance in Solid-State Lithium Batteries Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ (111) Epitaxial Thin Films. ACS Applied Energy Materials, 2020, 3, 1358-1363.	5.1	18
21	Origin of Optical Transparency in a Transparent Superconductor LiTi2O4. ACS Applied Electronic Materials, 2020, 2, 517-522.	4.3	5
22	Ultrahigh-pressure fabrication of single-phase \hat{l} ±-PbO2-type TiO2 epitaxial thin films. AIP Advances, 2020, 10, 025125.	1.3	4
23	Diffusion of F atoms from fluoride substrates promotes the epitaxial growth of metal fluorides. Applied Physics Express, 2020, 13, 085507.	2.4	3
24	Polarity reversal of the charge carrier in tetragonal TiHx(x=1.6 \hat{a}^2 2.0) at low temperatures. Physical Review Research, 2020, 2, .	3.6	3
25	Low-Energy-Consumption Three-Valued Memory Device Inspired by Solid-State Batteries. ACS Applied Materials & Solid-Stat	8.0	5
26	Epitaxial Growth of Single-Phase Magnesium Dihydride Thin Films. Inorganic Chemistry, 2019, 58, 15354-15358.	4.0	9
27	A hysteresis loop in electrical resistance of NbHx observed above the $\hat{l}^2\hat{a}^3\hat{l}$ » transition temperature. AIP Advances, 2019, 9, 015027.	1.3	7
28	Bottom-current-collector-free thin-film batteries using LiNi0.8Co0.2O2 epitaxial thin films. Journal of Power Sources, 2019, 416, 56-61.	7.8	16
29	Atomically Well-Ordered Structure at Solid Electrolyte and Electrode Interface Reduces the Interfacial Resistance. ACS Applied Materials & Interfaces, 2018, 10, 41732-41737.	8.0	58
30	Extremely Low Resistance of Li ₃ PO ₄ Electrolyte/Li(Ni _{0.5} Mn _{1.5})O ₄ Electrode Interfaces. ACS Applied Materials & Distribution (Naterials & Distribut	8.0	41
31	A nonvolatile memory device with very low power consumption based on the switching of a standard electrode potential. APL Materials, 2017, 5, .	5.1	13
32	Fabrication of atomically abrupt interfaces of single-phase TiH2 and Al2O3. APL Materials, 2017, 5, .	5.1	15
33	Scanning tunnelling spectroscopy of superconductivity on surfaces of LiTi2O4(111) thin films. Nature Communications, 2017, 8, 15975.	12.8	24
34	Preparation and in-situ characterization of well-defined solid electrolyte/electrode interfaces in thin-film lithium batteries. Solid State Ionics, 2016, 285, 118-121.	2.7	47
35	Negligible "Negative Space-Charge Layer Effects―at Oxide-Electrolyte/Electrode Interfaces of Thin-Film Batteries. Nano Letters, 2015, 15, 1498-1502.	9.1	119
36	Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films. Journal of Power Sources, 2014, 267, 881-887.	7.8	65

#	Article	IF	CITATIONS
37	Growth processes of lithium titanate thin films deposited by using pulsed laser deposition. Applied Physics Letters, 2012, 101, .	3.3	45