Arne Schousboe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2203185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2021, 148, 105198.	2.1	52
2	Glutamate Neurotoxicity Related to Energy Failure. , 2021, , 1-13.		0
3	Amino Acids Glutamate Dehydrogenase: An Anaplerotic Enzyme in Neurons and an Energy Producing Enzyme in Astrocytes. , 2021, , 51-55.		0
4	Downregulation of GABA Transporter 3 (GAT3) is Associated with Deficient Oxidative GABA Metabolism in Human Induced Pluripotent Stem Cell-Derived Astrocytes in Alzheimer's Disease. Neurochemical Research, 2021, 46, 2676-2686.	1.6	13
5	Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochemical Research, 2021, 46, 2551-2579.	1.6	3
6	Glutamate Dehydrogenase Is Important for Ammonia Fixation and Amino Acid Homeostasis in Brain During Hyperammonemia. Frontiers in Neuroscience, 2021, 15, 646291.	1.4	13
7	Preface for the Vladimir Parpura Honorary Issue of Neurochemical Research. Neurochemical Research, 2021, 46, 2507-2511.	1.6	0
8	Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology, 2021, 196, 108719.	2.0	145
9	Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer's disease. Cell Death and Disease, 2021, 12, 954.	2.7	41
10	Astrocytic Metabolism Focusing on Glutamate Homeostasis: A Short Review Dedicated to Vittorio Gallo. Neurochemical Research, 2020, 45, 522-525.	1.6	6
11	Preface for the Vittorio Gallo Honorary Issue of Neurochemical Research. Neurochemical Research, 2020, 45, 519-521.	1.6	0
12	Extensive astrocyte metabolism of γâ€aminobutyric acid (<scp>GABA</scp>) sustains glutamine synthesis in the mammalian cerebral cortex. Glia, 2020, 68, 2601-2612.	2.5	28
13	Pharmacological Characterization of a Betaine/GABA Transporter 1 (BGT1) Inhibitor Displaying an Unusual Biphasic Inhibition Profile and Anti-seizure Effects. Neurochemical Research, 2020, 45, 1551-1565.	1.6	3
14	Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology, 2019, 161, 107644.	2.0	25
15	Astrocytic pyruvate carboxylation: Status after 35 years. Journal of Neuroscience Research, 2019, 97, 890-896.	1.3	37
16	Special issue on neurotransmitter transporters. Neuropharmacology, 2019, 161, 107859.	2.0	1
17	Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neuroscience Letters, 2019, 689, 11-13.	1.0	66
18	State-Dependent Changes in Brain Glycogen Metabolism. Advances in Neurobiology. 2019. 23. 269-309.	1.3	6

#	Article	IF	CITATIONS
19	Astrocytic glycogen metabolism in the healthy and diseased brain. Journal of Biological Chemistry, 2018, 293, 7108-7116.	1.6	106
20	Modulation of Excitability via Glutamate and GABA Transporters $\hat{a}^{~\dagger}.$, 2018, , .		0
21	SKF89976A, A Highly Potent GABA Transport Inhibitor Capable of Crossing the Blood–Brain Barrier â~†. , 2018, , .		0
22	A Tribute to Mary C. McKenna: Glutamate as Energy Substrate and Neurotransmitter—Functional Interaction Between Neurons and Astrocytes. Neurochemical Research, 2017, 42, 4-9.	1.6	17
23	Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia: Examples from Pathology. Neurochemical Research, 2017, 42, 19-34.	1.6	33
24	Citrate, a Ubiquitous Key Metabolite with Regulatory Function in the CNS. Neurochemical Research, 2017, 42, 1583-1588.	1.6	55
25	Misconceptions regarding basic thermodynamics and enzyme kinetics have led to erroneous conclusions regarding the metabolic importance of lactate dehydrogenase isoenzyme expression. Journal of Neuroscience Research, 2017, 95, 2098-2102.	1.3	29
26	Delineation of the Role of Astroglial GABA Transporters in Seizure Control. Neurochemical Research, 2017, 42, 2019-2023.	1.6	10
27	The novel anticonvulsant neuropeptide and galanin analogue, NAXâ€5055, does not alter energy and amino acid metabolism in cultured brain cells. Journal of Neuroscience Research, 2017, 95, 2286-2296.	1.3	0
28	Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis. Journal of Neuroscience Research, 2017, 95, 2207-2216.	1.3	24
29	Glycogen Shunt Activity and Glycolytic Supercompensation in Astrocytes May Be Distinctly Mediated via the Muscle Form of Glycogen Phosphorylase. Neurochemical Research, 2017, 42, 2490-2494.	1.6	9
30	Preface for the Ursula Sonnewald Honorary Issue of Neurochemical Research. Neurochemical Research, 2017, 42, 1581-1582.	1.6	0
31	Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia, 2017, 65, 474-488.	2.5	30
32	Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates. Neurochemical Research, 2017, 42, 810-826.	1.6	30
33	Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). Journal of Medicinal Chemistry, 2017, 60, 8834-8846.	2.9	16
34	Astrocytic GABA Transporters: Pharmacological Properties and Targets for Antiepileptic Drugs. Advances in Neurobiology, 2017, 16, 283-296.	1.3	28
35	Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. Advances in Neurobiology, 2017, 16, 137-167.	1.3	21
36	The 12th International Conference on Brain Energy Metabolism (ICBEM): "Energy Metabolism and Neuron–Glia Interactions in Brain: From Molecular Mechanisms to Novel Therapeutic Approaches― Journal of Neuroscience Research, 2017, 95, 2095-2097.	1.3	0

#	Article	IF	CITATIONS
37	Preface for the Mary C. McKenna Honorary Issue of Neurochemical Research. Neurochemical Research, 2017, 42, 1-3.	1.6	31
38	Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood. Advances in Neurobiology, 2016, 13, 43-58.	1.3	12
39	Introduction to the Glutamate–Glutamine Cycle. Advances in Neurobiology, 2016, 13, 1-7.	1.3	35
40	The Glutamine Transporters and Their Role in the Glutamate/GABA–Glutamine Cycle. Advances in Neurobiology, 2016, 13, 223-257.	1.3	50
41	Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. Journal of Neuroscience Research, 2016, 94, 1561-1571.	1.3	80
42	40ÂYear Anniversary Issue of Neurochemical Research. Neurochemical Research, 2016, 41, 1-2.	1.6	24
43	The anticonvulsant action of the galanin receptor agonist NAX-5055 involves modulation of both excitatory- and inhibitory neurotransmission. Epilepsy Research, 2016, 121, 55-63.	0.8	5
44	Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenaseâ€deficient astrocytes. Journal of Neuroscience Research, 2015, 93, 1093-1100.	1.3	16
45	The Subcellular Localization of GABA Transporters and Its Implication for Seizure Management. Neurochemical Research, 2015, 40, 410-419.	1.6	9
46	Brain glycogen: emergency fuel and dynamic function in neurotransmission. Metabolic Brain Disease, 2015, 30, 249-249.	1.4	2
47	Glutamate neurotransmission is affected in prenatally stressed offspring. Neurochemistry International, 2015, 88, 73-87.	1.9	32
48	Introduction to Special Issue in Honor of Michael D. Norenberg: A Pathologist Who Incorporated Glutamine to the Astrocytic-Neuronal Crosstalk. Neurochemical Research, 2015, 40, 227-229.	1.6	0
49	AMPK Activation Affects Glutamate Metabolism in Astrocytes. Neurochemical Research, 2015, 40, 2431-2442.	1.6	20
50	Structure activity relationship of selective GABA uptake inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 2480-2488.	1.4	27
51	Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy. Neurochemistry International, 2015, 88, 32-37.	1.9	7
52	The Glutamine–Glutamate/GABA Cycle: Function, Regional Differences in Glutamate and GABA Production and Effects of Interference with GABA Metabolism. Neurochemical Research, 2015, 40, 402-409.	1.6	177
53	Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy: a PET study with [11C]acetate in humans. Frontiers in Neuroscience, 2014, 8, 353.	1.4	16
54	Introduction to Special Issue in Honor of Professor Povl Krogsgaard-Larsen. Neurochemical Research, 2014, 39, 1845-1846.	1.6	0

Arne Schousboe

#	Article	IF	CITATIONS
55	A Subconvulsive Dose of Kainate Selectively Compromises Astrocytic Metabolism in the Mouse Brain <i>In Vivo</i> . Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1340-1346.	2.4	15
56	Glutamate Metabolism in the Brain Focusing on Astrocytes. Advances in Neurobiology, 2014, 11, 13-30.	1.3	274
57	Effects of hyperammonemia on brain energy metabolism: controversial findings in vivo and in vitro. Metabolic Brain Disease, 2014, 29, 913-917.	1.4	19
58	Effect of Glutamine Synthetase Inhibition on Brain and Interorgan Ammonia Metabolism in Bile Duct Ligated Rats. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 460-466.	2.4	16
59	The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters. Neurochemical Research, 2014, 39, 1980-1987.	1.6	57
60	Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). Neuromethods, 2014, , 73-105.	0.2	31
61	Glutamate and ATP: The Crossroads of Signaling and Metabolism in the Brain. Advances in Neurobiology, 2014, 11, 1-12.	1.3	10
62	Hepatic encephalopathy: an enigma from patient to enzyme and back. Metabolic Brain Disease, 2013, 28, 117-117.	1.4	1
63	Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochemical Pharmacology, 2013, 86, 521-528.	2.0	29
64	Selective mGAT2 (BGT-1) GABA Uptake Inhibitors: Design, Synthesis, and Pharmacological Characterization. Journal of Medicinal Chemistry, 2013, 56, 2160-2164.	2.9	36
65	Brain Alanine Formation as an Ammonia-Scavenging Pathway during Hyperammonemia: Effects of Glutamine Synthetase Inhibition in Rats and Astrocyte—Neuron Co-Cultures. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1235-1241.	2.4	36
66	Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA. Frontiers in Endocrinology, 2013, 4, 102.	1.5	228
67	Energy Metabolism of the Brain. , 2012, , 200-231.		79
68	Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochemistry International, 2012, 61, 546-558.	1.9	141
69	siRNA knock down of glutamate dehydrogenase in astrocytes affects glutamate metabolism leading to extensive accumulation of the neuroactive amino acids glutamate and aspartate. Neurochemistry International, 2012, 61, 490-497.	1.9	40
70	Glial cells in (patho)physiology. Journal of Neurochemistry, 2012, 121, 4-27.	2.1	460
71	Studies of Brain Metabolism: A Historical Perspective. Advances in Neurobiology, 2012, , 909-920.	1.3	12
72	GABA transport inhibitors and seizure protection: the past and future. Future Medicinal Chemistry, 2011, 3, 183-187.	1.1	57

#	Article	IF	CITATIONS
73	Inhibition of glutamine synthesis induces glutamate dehydrogenase-dependent ammonia fixation into alanine in co-cultures of astrocytes and neurons. Neurochemistry International, 2011, 59, 482-488.	1.9	36
74	Detoxification of Ammonia in Mouse Cortical GABAergic Cell Cultures Increases Neuronal Oxidative Metabolism and Reveals an Emerging Role for Release of Glucose-Derived Alanine. Neurotoxicity Research, 2011, 19, 496-510.	1.3	43
75	Selective GABA Transporter Inhibitors Tiagabine and EF1502 Exhibit Mechanistic Differences in Their Ability to Modulate the Ataxia and Anticonvulsant Action of the Extrasynaptic GABA _A Receptor Agonist Gaboxadol. Journal of Pharmacology and Experimental Therapeutics. 2011. 338. 214-219.	1.3	48
76	Neurotransmitter Transporters and Anticonvulsant Drug Development. Neuromethods, 2011, , 431-446.	0.2	3
77	Functional Importance of the Astrocytic Glycogen-Shunt and Glycolysis for Maintenance of an Intact Intra/Extracellular Glutamate Gradient. Neurotoxicity Research, 2010, 18, 94-99.	1.3	45
78	Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. , 2010, 125, 394-401.		164
79	Synaptic and extrasynaptic GABA transporters as targets for antiâ€epileptic drugs. Journal of Neurochemistry, 2009, 109, 139-144.	2.1	112
80	Glutamate Uptake Triggers Transporter-Mediated GABA Release from Astrocytes. PLoS ONE, 2009, 4, e7153.	1.1	109
81	The micro-architecture of the cerebral cortex: Functional neuroimaging models and metabolism. NeuroImage, 2008, 40, 1436-1459.	2.1	53
82	Regulation of Excitation by GABA Neurotransmission: Focus on Metabolism and Transport. , 2008, 44, 201-221.		24
83	The Transcriptome and Metabolic Gene Signature of Protoplasmic Astrocytes in the Adult Murine Cortex. Journal of Neuroscience, 2007, 27, 12255-12266.	1.7	420
84	GABA: Homeostatic and pharmacological aspects. Progress in Brain Research, 2007, 160, 9-19.	0.9	83
85	Energy substrates to support glutamatergic and GABAergic synaptic function: Role of glycogen, glucose and lactate. Neurotoxicity Research, 2007, 12, 263-268.	1.3	47
86	A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochemistry International, 2006, 48, 637-642.	1.9	39
87	Neurotransmitter transporters: molecular function of important drug targets. Trends in Pharmacological Sciences, 2006, 27, 375-383.	4.0	289
88	The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 2006, 98, 641-653.	2.1	857
89	Glucose is Necessary to Maintain Neurotransmitter Homeostasis during Synaptic Activity in Cultured Glutamatergic Neurons. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1285-1297.	2.4	153
90	Cellular mitochondrial heterogeneity in cultured astrocytes as demonstrated by immunogold labeling of α-ketoglutarate dehydrogenase. Glia, 2006, 53, 225-231.	2.5	47

#	Article	IF	CITATIONS
91	Structure-Activity Relationships of Selective GABA Uptake Inhibitors. Current Topics in Medicinal Chemistry, 2006, 6, 1861-1882.	1.0	69
92	Structure–Activity Relationship and Pharmacology of γâ€Aminobutyric Acid (GABA) Transport Inhibitors. Advances in Pharmacology, 2006, 54, 265-284.	1.2	39
93	Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorganic and Medicinal Chemistry, 2005, 13, 895-908.	1.4	73
94	Effect of Hyperosmotic Conditions on the Expression of the Betaine-GABA-Transporter (BGT-1) in Cultured Mouse Astrocytes. Neurochemical Research, 2005, 30, 855-865.	1.6	33
95	First Demonstration of a Functional Role for Central Nervous System Betaine/γ-Aminobutyric Acid Transporter (mGAT2) Based on Synergistic Anticonvulsant Action among Inhibitors of mGAT1 and mGAT2. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 866-874.	1.3	79
96	Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochemistry International, 2005, 46, 489-499.	1.9	64
97	Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochemistry International, 2005, 47, 92-102.	1.9	89
98	Role of Astrocytes in the Maintenance and Modulation of Glutamatergic and GABAergic Neurotransmission. Neurochemical Research, 2003, 28, 347-352.	1.6	170
99	Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochemistry International, 2003, 43, 445-451.	1.9	36
100	Compartmentation of Glutamine, Glutamate, and GABA Metabolism in Neurons and Astrocytes: Functional Implications. Neuroscientist, 2003, 9, 398-403.	2.6	110
101	Correlation between Anticonvulsant Activity and Inhibitory Action on Glial Î ³ -Aminobutyric Acid Uptake of the Highly Selective Mouse Î ³ -Aminobutyric Acid Transporter 1 Inhibitor 3-Hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and ItsN-Alkylated Analogs. Journal of Pharmacology and Experimental Therapeutics. 2002. 302. 636-644.	1.3	73
102	A Possible Role of Alanine for Ammonia Transfer Between Astrocytes and Glutamatergic Neurons. Journal of Neurochemistry, 2002, 75, 471-479.	2.1	173
103	Demonstration of pyruvate recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochemical Research, 2002, 27, 1431-1437.	1.6	80
104	Multiple compartments with different metabolic characteristics are involved in biosynthesis of intracellular and released glutamine and citrate in astrocytes. Glia, 2001, 35, 246-252.	2.5	80
105	Pharmacological and functional characterization of astrocytic GABA transport: a short review. , 2000, 25, 1241-1244.		81
106	Compartmentation of TCA cycle metabolism in cultured neocortical neurons revealed by 13C MR spectroscopy. Neurochemistry International, 2000, 36, 349-358.	1.9	48
107	Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. European Journal of Pharmacology, 1999, 375, 367-374.	1.7	40
108	Selective Inhibitors of Glial GABA Uptake:Â Synthesis, Absolute Stereochemistry, and Pharmacology of the Enantiomers of 3-Hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and Analogues. Journal of Medicinal Chemistry, 1999, 42, 5402-5414.	2.9	53

Arne Schousboe

#	Article	IF	CITATIONS
109	Metabolism of Lactate in Cultured GABAergic Neurons Studied by 13C Nuclear Magnetic Resonance Spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 109-117.	2.4	89
110	Ionic mechanisms in glutamate-induced astrocyte swelling: Role of K+ influx. , 1998, 52, 307-321.		88
111	Cellular Distribution and Kinetic Properties of High-Affinity Glutamate Transporters. Brain Research Bulletin, 1998, 45, 233-238.	1.4	248
112	High Affinity Glutamate Transporters: Regulation of Expression and Activity. Molecular Pharmacology, 1997, 52, 6-15.	1.0	367
113	Glutamate transport and metabolism in astrocytes. , 1997, 21, 56-63.		235
114	Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. , 1997, 21, 99-105.		180
115	Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C] glutamate. , 1996, 17, 160-168.		99
116	Metabolic Trafficking between Neurons and Astrocytes: The Glutamate/Glutamine Cycle Revisited. Developmental Neuroscience, 1995, 17, 203-211.	1.0	184
117	Uptake, Release, and Metabolism of Citrate in Neurons and Astrocytes in Primary Cultures. Journal of Neurochemistry, 1994, 62, 1727-1733.	2.1	85
118	Anticonvulsant activity of the γ-aminobutyric acid uptake inhibitor N-4,4-diphenyl-3-butenyl-4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol. European Journal of Pharmacology, 1993, 236, 147-149.	1.7	15
119	Glutamate and Glutamine Metabolism and Compartmentation in Astrocytes. Developmental Neuroscience, 1993, 15, 359-366.	1.0	165
120	Metabolism and Release of Glutamate in Cerebellar Granule Cells Cocultured with Astrocytes from Cerebellum or Cerebral Cortex. Journal of Neurochemistry, 1991, 56, 59-66.	2.1	57
121	Stimulation of ?-[3H]Aminobutyric Acid Release from Cultured Mouse Cerebral Cortex Neurons by Sulphur-Containing Excitatory Amino Acid Transmitter Candidates: Receptor Activation Mediates Two Distinct Mechanisms of Release. Journal of Neurochemistry, 1991, 57, 1388-1397.	2.1	29
122	Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochemical Research, 1991, 16, 29-34.	1.6	108
123	Development of Benzodiazepine and Picrotoxin (t-Butylbicyclophosphorothionate) Binding Sites in Rat Cerebellar Granule Cells in Culture. Journal of Neurochemistry, 1990, 54, 473-478.	2.1	16
124	GABA-A agonists and GABA uptake inhibitors: Structure-activity relationships. Drug Development Research, 1990, 21, 169-188.	1.4	29
125	GABA agonist induced changes in ultrastructure and GABA receptor expression in cerebellar granule cells is linked to hyperpolarization of the neurons. International Journal of Developmental Neuroscience, 1990, 8, 473-479.	0.7	37
126	Development of excitatory amino acid induced cytotoxicity in cultured neurons. International Journal of Developmental Neuroscience, 1990, 8, 209-216.	0.7	138

#	Article	IF	CITATIONS
127	Immunocytochemical investigation of L-glutamic acid decarboxylase in the rat hippocampal formation: The influence of transient cerebral ischemia. Journal of Comparative Neurology, 1989, 281, 40-53.	0.9	54
128	Release of taurine from astrocytes during potassium-evoked swelling. Glia, 1989, 2, 45-50.	2.5	134
129	Anticonvulsant activity of intracerebroventricularly administered glial GABA uptake inhibitors and other GABAmimetics in chemical seizure models. Epilepsy Research, 1989, 4, 34-41.	0.8	34
130	Dedication issue of neurochemical research in honor of Elling Kvamme. Neurochemical Research, 1989, 14, 293-295.	1.6	0
131	Baclofen-induced, calcium-dependent stimulation of in vivo release ofd-[3H]aspartate from rat hippocampus monitored by intracerebral microdialysis. Neurochemical Research, 1989, 14, 321-326.	1.6	24
132	Inhibition by excitatory sulphur amino acids of the high-affinityl-glutamate transporter in synaptosomes and in primary cultures of cortical astrocytes and cerebellar neurons. Neurochemical Research, 1989, 14, 333-343.	1.6	41
133	Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochemical Research, 1989, 14, 359-366.	1.6	132
134	Direct Evidence That Excitotoxicity in Cultured Neurons Is Mediated via N-Methyl-D-Aspartate (NMDA) as well as Non-NMDA Receptors. Journal of Neurochemistry, 1989, 53, 297-299.	2.1	209
135	Potassium-Stimulated Release of [3HJTaurine from Cultured GABAergic and Clutamatergic Neurons. Journal of Neurochemistry, 1989, 53, 1309-1315.	2.1	53
136	Glutamate-Induced Increase in Intracellular Ca2+in Cerebral Cortex Neurons Is Transient in Immature Cells but Permanent in Mature Cells. Journal of Neurochemistry, 1989, 53, 1316-1319.	2.1	121
137	Neuroactive Sulphur Amino Acids Evoke a Calcium-Dependent Transmitter Release from Cultured Neurones That Is Sensitive to Excitatory Amino Acid Receptor Antagonists. Journal of Neurochemistry, 1989, 52, 1648-1651.	2.1	28
138	Anticonvulsant activity of the glial GABA uptake inhibitor, THAO, in chemical seizures. European Journal of Pharmacology, 1989, 168, 265-268.	1.7	19
139	Glutamate-Induced45Ca2+Uptake into Immature Cerebral Cortex Neurons Shows a Distinct Pharmacological Profile. Journal of Neurochemistry, 1989, 53, 1959-1962.	2.1	16
140	?-Aminobutyric Acid Agonist-Induced Alterations in the Ultrastructure of Cultured Cerebellar Granule Cells Is Restricted to Early Development. Journal of Neurochemistry, 1988, 51, 243-245.	2.1	20
141	Evidence that Aspartate Aminotransferase Activity and Ketodicarboxylate Carrier Function Are Essential for Biosynthesis of Transmitter Glutamate. Journal of Neurochemistry, 1988, 51, 317-320.	2.1	149
142	Temporal development of gaba agonist induced alterations in ultrastructure and gaba receptor expression in cultured cerebellar granule cells. International Journal of Developmental Neuroscience, 1987, 5, 263-269.	0.7	38
143	GABA uptake inhibitors: relevance to antiepileptic drug research. Epilepsy Research, 1987, 1, 77-93.	0.8	180
144	Effect of Repeated Treatment with a ?-Aminobutyric Acid Receptor Agonist on Postnatal Neural Development in Rats. Journal of Neurochemistry, 1987, 49, 1462-1470.	2.1	57

#	Article	IF	CITATIONS
145	Primary Cultures of Gabaergic and Glutamatergic Neurons as Model Systems to Study Neurotransmitter Functions I. Differentiated Cells. , 1987, , 19-31.		47
146	GABA-agonists induce the formation of low-affinity GABA-receptors on cultured cerebellar granule cells via preexisting high affinity GABA receptors. Neurochemical Research, 1986, 11, 599-606.	1.6	42
147	Effect ofl-homocysteine and derivatives on the high-affinity uptake of taurine and GABA into synaptosomes and cultured neurons and astrocytes. Neurochemical Research, 1986, 11, 1487-1496.	1.6	13
148	Stereoselective uptake of the GABA-transaminase inhibitors gamma-vinyl gaba and gamma-acetylenic GABA into neurons and astrocytes. Neurochemical Research, 1986, 11, 1497-1505.	1.6	50
149	Acetoacetate and Glucose as Lipid Precursors and Energy Substrates in Primary Cultures of Astrocytes and Neurons from Mouse Cerebral Cortex. Journal of Neurochemistry, 1986, 46, 773-778.	2.1	126
150	Excitatory Amino Acids: Studies on the Biochemical and Chemical Stability of Ibotenic Acid and Related Compounds. Journal of Neurochemistry, 1985, 45, 725-731.	2.1	35
151	Cellular Origin of Ischemia-Induced Glutamate Release from Brain Tissue In Vivo and In Vitro. Journal of Neurochemistry, 1985, 45, 145-151.	2.1	467
152	The trophic effect of gaba on cerebellar granule cells is mediated by gaba-receptors. International Journal of Developmental Neuroscience, 1985, 3, 401-407.	0.7	74
153	Influence of Pathological Concentrations of Ammonia on Metabolic Fate of14C-Labeled Glutamate in Astrocytes in Primary Cultures. Journal of Neurochemistry, 1984, 42, 594-597.	2.1	58
154	Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis. Journal of Neurochemistry, 1984, 43, 1369-1374.	2.1	2,872
155	GABA Induces Functionally Active Low-Affinity GABA Receptors on Cultured Cerebellar Granule Cells. Journal of Neurochemistry, 1984, 43, 1737-1744.	2.1	161
156	Ornithine-?-Aminotransferase Exhibits Different Kinetic Properties in Astrocytes, Cerebral Cortex Interneurons, and Cerebellar Granule Cells in Primary Culture. Journal of Neurochemistry, 1984, 42, 1194-1197.	2.1	20
157	GABA influences the ultrastructure composition of cerebellar granule cells during development in culture. International Journal of Developmental Neuroscience, 1984, 2, 247-251.	0.7	121
158	Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Research, 1983, 260, 279-285.	1.1	47
159	Transport and Metabolism of Glutamate and Gaba in Neurons and Glial Cells. International Review of Neurobiology, 1981, 22, 1-45.	0.9	392
160	ACTIVITY AND ISOENZYME PATTERN OF LACTATE DEHYDROGENASE IN ASTROBLASTS CULTURED FROM BRAINS OF NEWBORN MICE. Journal of Neurochemistry, 1979, 32, 1787-1792.	2.1	41
161	Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochemical Research, 1978, 3, 1-14.	1.6	218
162	Evidence for net uptake of GABA into mouse astrocytes in primary cultures?Its sodium dependence and potassium independence. Neurochemical Research, 1978, 3, 313-323.	1.6	82

#	ARTICLE	IF	CITATIONS
163	Inhibition of the high-affinity, net uptake of GABA into cultured astrocytes by β-proline, nipecotic acid and other compounds. Brain Research, 1978, 153, 623-626.	1.1	65
164	Taurine uptake in astrocytes cultured from dissociated mouse brain hemispheres. Brain Research, 1976, 116, 158-164.	1.1	102
165	PROPERTIES OF I-GLUTAMATE DECARBOXYLASE FROM BRAINS OF ADULT AND NEWBORN MICE. Journal of Neurochemistry, 1976, 27, 653-659.	2.1	54
166	Ion and Energy Metabolism of the Brain at the Cellular Level. International Review of Neurobiology, 1975, 18, 141-211.	0.9	113
167	Development of potassium effects on ion concentrations and indicator spaces in rat brain-cortex slices during postnatal ontogenesis. Experimental Brain Research, 1972, 15, 521-31.	0.7	33