
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	30.8	402
2	Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy and Buildings, 2018, 158, 1049-1062.	6.7	275
3	Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Scientific Reports, 2015, 5, 12964.	3.3	198
4	Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy and Buildings, 2017, 149, 463-470.	6.7	151
5	A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Materials, 2019, 16, 597-606.	18.0	150
6	Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2018, 178, 273-279.	6.2	141
7	Cation Substitution Dependent Bimodal Photoluminescence in Whitlockite Structural Ca _{3–<i>x</i>} Sr _{<i>x</i>} (PO ₄) ₂ :Eu ²⁺ (0 â‰)	ſj4EðQq1]	1 017 84314
8	Synthesis and characterization of lauric acid/expanded vermiculite as form-stabilized thermal energy storage materials. Energy and Buildings, 2016, 116, 677-683.	6.7	108
9	Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding Cu powder and carbon fiber for thermal energy storage. Applied Thermal Engineering, 2019, 156, 653-659.	6.0	105
10	Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite. Renewable Energy, 2017, 112, 113-123.	8.9	104
11	Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy and Buildings, 2016, 130, 113-121.	6.7	89
12	Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato. RSC Advances, 2016, 6, 15821-15830.	3.6	85
13	Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings. Energy and Buildings, 2017, 139, 197-204.	6.7	85
14	Preparation and characterization of the properties of polyethylene glycol @ Si 3 N 4 nanowires as phase-change materials. Chemical Engineering Journal, 2016, 301, 229-237.	12.7	79
15	Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Applied Thermal Engineering, 2017, 120, 107-114.	6.0	77
16	Lauric-stearic acid eutectic mixture/carbonized biomass waste corn cob composite phase change materials: Preparation and thermal characterization. Thermochimica Acta, 2019, 674, 21-27.	2.7	76
17	Form stable composite phase change materials from palmitic-lauric acid eutectic mixture and carbonized abandoned rice: Preparation, characterization, and thermal conductivity enhancement. Energy and Buildings, 2017, 154, 46-54.	6.7	75
18	Ca ₆ La ₄ (SiO ₄) ₂ (PO ₄) ₂ a novel apatite green-emitting phosphor for near-ultraviolet excited w-LEDs. Journal of Materials Chemistry C, 2016, 4, 4675-4683.	sub>:Eu <sı 5.5</sı 	up>2+71

2

ΖΗΑΟΗUΙ ΗUANG

#	Article	IF	CITATIONS
19	A novel composite Phase change material of Stearic Acid/Carbonized sunflower straw for thermal energy storage. Materials Letters, 2018, 215, 42-45.	2.6	70
20	Hierarchically channel-guided porous wood-derived shape-stabilized thermal regulated materials with enhanced thermal conductivity for thermal energy storage. Materials Research Express, 2019, 6, 115515.	1.6	56
21	Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials. Journal of Materials Science and Technology, 2018, 34, 379-386.	10.7	54
22	In Situ Exfoliation of Graphene in Epoxy Resins: A Facile Strategy to Efficient and Large Scale Graphene Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24112-24122.	8.0	52
23	Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings. Journal of Energy Storage, 2021, 36, 102420.	8.1	52
24	Polyethylene glycol/Cu/SiO ₂ form stable composite phase change materials: preparation, characterization, and thermal conductivity enhancement. RSC Advances, 2016, 6, 58740-58748.	3.6	51
25	Growth of α-Si ₃ N ₄ nanobelts via Ni-catalyzed thermal chemical vapour deposition and their violet-blue luminescent properties. CrystEngComm, 2013, 15, 785-790.	2.6	48
26	Metalâ€Based Nanocatalysts via a Universal Design on Cellular Structure. Advanced Science, 2020, 7, 1902051.	11.2	48
27	Preparation and performance of novel form-stable composite phase change materials based on polyethylene glycol/White Carbon Black assisted by super-ultrasound-assisted. Thermochimica Acta, 2016, 638, 35-43.	2.7	47
28	Bismuth oxyiodide coupled with bismuth nanodots for enhanced photocatalytic bisphenol A degradation: synergistic effects and mechanistic insight. Nanoscale, 2017, 9, 15484-15493.	5.6	47
29	Transverse and longitudinal flexural properties of unidirectional carbon fiber composites interleaved with hierarchical Aramid pulp micro/nano-fibers. Composites Part B: Engineering, 2020, 188, 107897.	12.0	45
30	Synthesis and characterization of beeswax-tetradecanol-carbon fiber/expanded perlite form-stable composite phase change material for solar energy storage. Composites Part A: Applied Science and Manufacturing, 2018, 107, 180-188.	7.6	43
31	Luminescence and energy transfer of a color tunable phosphor: Tb ³⁺ and Eu ³⁺ co-doped ScPO ₄ . RSC Advances, 2016, 6, 28887-28894.	3.6	42
32	Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning. Polymer, 2020, 186, 122012.	3.8	38
33	Thermal behavior of composite phase change materials based on polyethylene glycol and expanded vermiculite with modified porous carbon layer. Journal of Materials Science, 2018, 53, 13067-13080.	3.7	37
34	Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties. CrystEngComm, 2013, 15, 9032.	2.6	36
35	Graphite Nanoplatelet Modified Epoxy Resin for Carbon Fibre Reinforced Plastics with Enhanced Properties. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	36
36	Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning. Chemical Physics Letters, 2018, 691, 314-318.	2.6	36

#	Article	IF	CITATIONS
37	Paraffin/Ti ₃ C ₂ T <i>_x</i> Mxene@Gelatin Aerogels Composite Phase-Change Materials with High Solar-Thermal Conversion Efficiency and Enhanced Thermal Conductivity for Thermal Energy Storage. Energy & Fuels, 2021, 35, 2805-2814.	5.1	36
38	Tunable SrAl2Si2O8: Eu phosphor prepared in air via valence state-controlled means. Optical Materials, 2015, 42, 80-86.	3.6	35
39	Crystal structure and luminescence property of a novel single-phase white light emission phosphor KCaBi(PO4)2:Dy3+. Materials Research Bulletin, 2017, 86, 146-152.	5.2	35
40	Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1753-1761.	3.6	33
41	Identification of dual luminescence centers from a single site in a novel blue-pumped Ca ₃ Sc ₂ Ge ₃ O ₁₂ :Ce ³⁺ phosphor. Dalton Transactions, 2019, 48, 11791-11802.	3.3	33
42	Enhanced thermal conductivity of composite phase change materials based on carbon modified expanded perlite. Materials Chemistry and Physics, 2021, 261, 124226.	4.0	33
43	Simple routes from natural graphite to graphite foams: Preparation, structure and properties. Carbon, 2020, 159, 527-541.	10.3	31
44	Photoluminescence properties of a Ce ³⁺ doped Sr ₃ MgSi ₂ O ₈ phosphor with good thermal stability. RSC Advances, 2018, 8, 15587-15594.	3.6	30
45	Directing helical CNT into chemically-etched micro-channels on aluminum substrate for strong adhesive bonding with carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105952.	7.6	28
46	Energy transfer and thermal stability of Ce3+, Tb3+ co-doped Ca3Si2O4N2 phosphors for white light-emitting diodes. Chemical Physics Letters, 2017, 690, 31-37.	2.6	27
47	Energy transfer mechanism and color-tunable luminescence properties of Eu3+-doped BaMg2V2O8 vanadate phosphors. Chemical Physics Letters, 2016, 662, 86-90.	2.6	26
48	Synthesis of β-SiC nanowires via a facile CVD method and their photoluminescence properties. RSC Advances, 2016, 6, 24267-24272.	3.6	26
49	Controllable synthesis of Titaniaâ€Supported Bismuth Oxyiodide Heterostructured Nanofibers with Highly Exposed (1 1 0) Bismuth Oxyiodide Facets for Enhanced Photocatalytic Activity. ChemCatChem, 2016, 8, 3780-3789.	3.7	25
50	Luminescence properties and energy transfer behavior of colour-tunable white-emitting Sr ₄ Al ₁₄ O ₂₅ phosphors with co-doping of Eu ²⁺ , Eu ³⁺ and Mn ⁴⁺ . RSC Advances, 2017, 7, 52995-53001.	3.6	25
51	Preparation, structure, luminescence properties of europium doped zinc spinel structure green-emitting phosphor ZnAl2O4:Eu2+. Journal of Rare Earths, 2018, 36, 931-938.	4.8	25
52	Preparation and properties of polystyrene/silica fibres flexible thermal insulation materials by centrifugal spinning. Polymer, 2019, 185, 121964.	3.8	25
53	Adhesive bond strength enhancing between carbon fiber reinforced polymer and aluminum substrates with different surface morphologies created by three sulfuric acid solutions. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106427.	7.6	25
54	Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method. RSC Advances, 2014, 4, 18360-18364.	3.6	22

#	Article	IF	CITATIONS
55	Crystal structure tailoring and luminescence tuning of Sr1â^'Ba Al2Si2O8:Eu2+ phosphors for white-light-emitting diodes. Journal of Alloys and Compounds, 2019, 776, 554-559.	5.5	21
56	Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties. Scientific Reports, 2015, 5, 17250.	3.3	20
57	Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	20
58	Thermal conductivity enhanced polyethylene glycol/expanded perlite shape-stabilized composite phase change materials with Cu powder for thermal energy storage. Materials Research Express, 2018, 5, 095503.	1.6	20
59	Discovery of novel solid solution Ca3Si3â~'x O3+x N4â~'2x : Eu2+ phosphors: structural evolution and photoluminescence tuning. Scientific Reports, 2017, 7, 18103.	3.3	19
60	Preparation, structure, luminescence properties of terbium doped perovskite-like structure green-emitting phosphors SrLaAlO4:Tb3+. Optical Materials, 2019, 95, 109191.	3.6	19
61	The Influence of Plateletâ€Like LaMgAl ₁₁ O ₁₉ on the Toughness of 3Âmol% Yttria Partially Stabilized Zirconia Ceramic. International Journal of Applied Ceramic Technology, 2015, 12, 176-183.	2.1	18
62	Synthesis and luminescence properties of nitrided lanthanum magnesium hexaluminate LaMgAl11O19 phosphors. Ceramics International, 2014, 40, 4535-4539.	4.8	17
63	Multienergy-Triggered Composite Phase-Change Materials Based on Graphite Foams Synthesized from Graphite Extracted from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 8051-8063.	6.7	17
64	Ni(NO ₃) ₂ -Assisted Catalytic Synthesis and Photoluminescence Property of Ultralong Single Crystal Sialon Nanobelts. Crystal Growth and Design, 2013, 13, 10-14.	3.0	16
65	Preparation and properties of polyacrylonitrile/polyethylene glycol composite fibers phase change materials by centrifugal spinning. Materials Research Express, 2019, 6, 095502.	1.6	16
66	Form-stable and tough paraffin-Al2O3/high density polyethylene composites as environment-friendly thermal energy storage materials: preparation, characterization and analysis. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2089-2099.	3.6	16
67	Effect of LaMgAl11O19 addition and temperature on the mechanical properties of Al2O3-based ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 160-167.	5.6	15
68	Molten salt synthesis, growth mechanism, and photoluminescence of rod chlorapatite microcrystallites. CrystEngComm, 2019, 21, 1809-1817.	2.6	15
69	Cyan-emitting Ba0.45Ca2.5La6(SiO4)6: 0.05 Eu2+ and Ba1.45Ca1.5La6(SiO4)6:0.05 Eu2+ solid-solution phosphors for white light-emitting diodes. Ceramics International, 2021, 47, 12348-12356.	4.8	15
70	Growth mechanism and synchronous synthesis of 1D <i>β</i> -sialon nanostructures and <i>β</i> -sialon-Si ₃ N ₄ composite powders by a process of reduction nitridation. Materials Research Express, 2019, 6, 065054.	1.6	14
71	Thermally Conductive and Shape‣tabilized Polyethylene Glycol/Carbon Foam Phaseâ€Change Composites for Thermal Energy Storage. ChemistrySelect, 2020, 5, 3217-3224.	1.5	14
72	Preparation and Characterization of Flexible Smart Glycol/Polyvinylpyrrolidone/Nano-Al ₂ O ₃ Phase Change Fibers. Energy & Fuels, 2021, 35, 877-882.	5.1	14

#	Article	IF	CITATIONS
73	Form-Stable Phase Change Materials with Enhanced Thermal Conductivity Based on Binary Capric-Palmitic Acid and Graphite Carbon In Situ Modified Expanded Perlite. ACS Applied Energy Materials, 2021, 4, 9124-9132.	5.1	14
74	Microstructure and electrochemical properties of polyacrylonitrile-based carbon micro- and nanofibers fabricated by centrifugal spinning. Chemical Physics Letters, 2017, 684, 14-19.	2.6	13
75	Phase formation of (Y,Ce)2BaAl4SiO12 yellow microcrystal-glass phosphor for blue LED pumped white lighting. Ceramics International, 2017, 43, 6425-6429.	4.8	12
76	Direct-white-emitting phosphor SrAl ₂ O ₄ : Eu ^{2+/3+} with colour-tunable photoluminescence by variation of europium activator valence. Materials Research Express, 2018, 5, 096202.	1.6	12
77	Color tunable Ba0.79Al10.9O17.14:xEu phosphor prepared in air via valence state control. Journal of Advanced Ceramics, 2017, 6, 81-89.	17.4	11
78	Preparation and photoluminescence properties of red-emitting phosphor ZnAl ₂ O ₄ :Eu ³⁺ with an intense ⁵ D ₀ → ⁷ F ₂ transition. Materials Research Express, 2018, 5, 025501.	1.6	11
79	Preparation and performance of shape-stable phase change materials based on carbonized-abandoned orange peel and paraffin. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 289-298.	2.1	11
80	A novel nano-porous aluminum substrate with anodizing treatment to encapsulate 1-tetrapropanol as composite phase change materials for thermal energy utilization. Chemical Engineering Journal, 2021, 404, 124588.	12.7	11
81	Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2Nanotube Arrays. International Journal of Photoenergy, 2012, 2012, 1-7.	2.5	10
82	Luminescence properties and energy transfer in K ₂ MgSiO ₄ :Ce ³ ^{+Tb³⁺ as a green phosphor. Materials Express, 2016, 6, 37-44.}	gt: 0.5	10
83	Photoluminescent properties of single-phase white-light Ca8ZnGd(PO4)7:Eu2+,Mn2+ phosphor. Chemical Physics Letters, 2020, 743, 137185.	2.6	10
84	Si3N4-SiCpComposites Reinforced byIn SituCo-Catalyzed Generated Si3N4Nanofibers. Journal of Nanomaterials, 2014, 2014, 1-6.	2.7	9
85	Paraffin/expanded graphite phase change composites with enhanced thermal conductivity prepared by implanted <i>β</i> -SiC nanowires with chemical vapor deposition method. Materials Research Express, 2018, 5, 025503.	1.6	9
86	Attapulgite: a promising natural mineral as carrier material for fatty acids phase change material. Journal of Thermal Analysis and Calorimetry, 2022, 147, 7203-7212.	3.6	9
87	Photoluminescence properties and application of yellow Ca 0.65 Si 10 Al 2 O 0.7 N 15.3 : x Eu 2+ phosphors for white LEDs. Solid State Sciences, 2017, 64, 84-90.	3.2	8
88	Single-phased chromaticity-tunable phosphor of Sr4Al14O25: Eu2+/3+ co-doped with Tb3+ for white-light-emitting diodes. Materials Research Express, 2019, 6, 115903.	1.6	8
89	Tunable photoluminescence of apatite phosphor Ca _{5.95â°'<i>x</i>} Sr _{<i>x</i>} La ₄ (SiO ₄) ₂ (PO <sul and its application in lightâ€emitting diodes. Journal of the American Ceramic Society, 2019, 102, 4226-4235.</sul 	0>4 3.8)ssub>4
90	Preparation and characterization of form-stable tetradecanol–palmitic acid expanded perlite composites containing carbon fiber for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1217-1225.	3.6	8

#	Article	IF	CITATIONS
91	Crystal structure and luminescence properties of green-emitting Sr1â^'Al12O19:xEu2+ phosphors. Ceramics International, 2016, 42, 5995-5999.	4.8	7
92	Fe–Sialon–Ti(C,N) composites from carbothermal reduction–nitridation of low-priced minerals and their application in taphole clay refractories. Ceramics International, 2014, 40, 9709-9714.	4.8	5
93	Dependence of crystal structure on mechanical and thermophysical properties of magnetoplumbiteâ€type LnMgAl ₁₁ O ₁₉ ceramics with substitution of Ln ³⁺ lons. International Journal of Applied Ceramic Technology, 2019, 16, 1596-1605.	2.1	5
94	An Efficient Environmentally Friendly Composite Material Based on Carbonized Biological Cellulose/Paraffin: Thermal and Sustainable Properties Analysis. ChemistrySelect, 2020, 5, 12051-12056.	1.5	5
95	Assembly of βâ€ S iC Nanowires film and humidity sensing performance. International Journal of Applied Ceramic Technology, 2019, 16, 1193-1199.	2.1	4
96	New apatiteâ€ŧype phosphor Ca ₉ La(PO ₄) ₅ (SiO ₄)F ₂ :Tb ³⁺ ,Dy <s with improved color rendering index. Journal of the American Ceramic Society, 2020, 103, 2602-2609.</s 	sup 3:8 + <td>up4</td>	up4
97	Preparation and Characterization of Composite Phase Change Materials Based on Lauricâ€Myristic Acid and Expanded Vermiculite with Carbon Layer. ChemistrySelect, 2021, 6, 3884-3890.	1.5	4
98	Synthesis and Characterization of Er ³⁺ -Doped SrNb ₂ O ₆ Phosphor for FIR Based Thermometer. ECS Journal of Solid State Science and Technology, 2021, 10, 046001.	1.8	3
99	Facile synthesis of αâ€5i ₃ N ₄ nanoneedles and their photoluminescence properties. International Journal of Applied Ceramic Technology, 2019, 16, 2373-2379.	2.1	2
100	Effect of purity and proportion of microcrystalline graphite ore on the electrical, mechanical and tribological performance of copper-carbon composites. Materials Research Express, 2019, 6, 125604.	1.6	2
101	N–Si doped carbon-embedded TiO ₂ composite fibers: a new photocatalysts with high yields	1.6	1