
Chunming Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infinite families of 2-designs from linear codes. Applicable Algebra in Engineering, Communications and Computing, 2022, 33, 193-211.	0.5	10
2	Infinite families of 2-designs from two classes of binary cyclic codes with three nonzeros. Advances in Mathematics of Communications, 2022, 16, 157.	0.7	8
3	On Infinite Families of Narrow-Sense Antiprimitive BCH Codes Admitting 3-Transitive Automorphism Groups and Their Consequences. IEEE Transactions on Information Theory, 2022, 68, 3096-3107.	2.4	7
4	Shortened Linear Codes From APN and PN Functions. IEEE Transactions on Information Theory, 2022, 68, 3780-3795.	2.4	5
5	The Subfield Codes and Subfield Subcodes of a Family of MDS Codes. IEEE Transactions on Information Theory, 2022, 68, 5792-5801.	2.4	3
6	An infinite family of antiprimitive cyclic codes supporting Steiner systems \$\$S(3,8, 7^m+1)\$\$. Designs, Codes, and Cryptography, 2022, 90, 1319-1333.	1.6	5
7	An Infinite Family of Linear Codes Supporting 4-Designs. IEEE Transactions on Information Theory, 2021, 67, 244-254.	2.4	36
8	The linear codes of t-designs held in the Reed-Muller and Simplex codes. Cryptography and Communications, 2021, 13, 927-949.	1.4	8
9	The projective general linear group \$\${mathrm {PGL}}(2,2^m)\$\$ and linear codes of length \$\$2^m+1\$\$. Designs, Codes, and Cryptography, 2021, 89, 1713-1734.	1.6	7
10	Cyclic Bent Functions and Their Applications in Sequences. IEEE Transactions on Information Theory, 2021, 67, 3473-3485.	2.4	2
11	Full Characterization of Minimal Linear Codes as Cutting Blocking Sets. IEEE Transactions on Information Theory, 2021, 67, 3690-3700.	2.4	25
12	Fast Algebraic Immunity of Boolean Functions and LCD Codes. IEEE Transactions on Information Theory, 2021, 67, 4828-4837.	2.4	3
13	Shortened Linear Codes Over Finite Fields. IEEE Transactions on Information Theory, 2021, 67, 5119-5132.	2.4	11
14	A Novel Application of Boolean Functions With High Algebraic Immunity in Minimal Codes. IEEE Transactions on Information Theory, 2021, 67, 6856-6867.	2.4	3
15	Infinite families of \$ 3 \$-designs from o-polynomials. Advances in Mathematics of Communications, 2021, 15, 557.	0.7	1
16	On the Menezes-Teske-Weng conjecture. Cryptography and Communications, 2020, 12, 19-27.	1.4	4
17	A class of narrow-sense BCH codes over \$\$mathbb {F}_q\$\$ of length \$\$rac{q^m-1}{2}\$\$. Designs, Codes, and Cryptography, 2020, 88, 413-427.	1.6	7
18	Codes, Differentially \$delta\$ -Uniform Functions, and \$t\$ -Designs. IEEE Transactions on Information Theory, 2020, 66, 3691-3703.	2.4	25

CHUNMING TANG

#	Article	IF	CITATIONS
19	Infinite families of 3â€designs from APN functions. Journal of Combinatorial Designs, 2020, 28, 97-117.	0.6	10
20	Linear codes of 2-designs associated with subcodes of the ternary generalized Reed–Muller codes. Designs, Codes, and Cryptography, 2020, 88, 625-641.	1.6	8
21	New characterizations and construction methods of bent and hyper-bent Boolean functions. Discrete Mathematics, 2020, 343, 112081.	0.7	3
22	On the boomerang uniformity of quadratic permutations. Designs, Codes, and Cryptography, 2020, 88, 2233-2246.	1.6	25
23	Minimal Linear Codes From Characteristic Functions. IEEE Transactions on Information Theory, 2020, 66, 5404-5413.	2.4	25
24	Combinatorial t-designs from special functions. Cryptography and Communications, 2020, 12, 1011-1033.	1.4	9
25	Infinite Families of Near MDS Codes Holding <i>t</i> -Designs. IEEE Transactions on Information Theory, 2020, 66, 5419-5428.	2.4	38
26	New Characterization and Parametrization of LCD Codes. IEEE Transactions on Information Theory, 2019, 65, 39-49.	2.4	40
27	Binary LCD Codes and Self-Orthogonal Codes From a Generic Construction. IEEE Transactions on Information Theory, 2019, 65, 16-27.	2.4	38
28	Regular p-ary bent functions with five terms and Kloosterman sums. Cryptography and Communications, 2019, 11, 1133-1144.	1.4	1
29	Steiner systems \$\$S(2, 4, rac{3^m-1}{2})\$\$ and 2-designs from ternary linear codes of length \$\$rac{3^m-1}{2}\$\$. Designs, Codes, and Cryptography, 2019, 87, 2793-2811.	1.6	20
30	Further study on the maximum number of bent components of vectorial functions. Designs, Codes, and Cryptography, 2019, 87, 2597-2610.	1.6	9
31	New quadratic bent functions in polynomial forms with coefficients in extension fields. Applicable Algebra in Engineering, Communications and Computing, 2019, 30, 333-347.	0.5	3
32	On \$sigma\$ -LCD Codes. IEEE Transactions on Information Theory, 2019, 65, 1694-1704.	2.4	29
33	Euclidean and Hermitian LCD MDS codes. Designs, Codes, and Cryptography, 2018, 86, 2605-2618.	1.6	75
34	Linear Codes Over \$mathbb F_q\$ Are Equivalent to LCD Codes for \$q>3\$. IEEE Transactions on Information Theory, 2018, 64, 3010-3017.	2.4	114
35	Complementary Dual Algebraic Geometry Codes. IEEE Transactions on Information Theory, 2018, 64, 2390-2397.	2.4	45
36	2-Correcting Lee Codes: (Quasi)-Perfect Spectral Conditions and Some Constructions. IEEE Transactions on Information Theory, 2018, 64, 3031-3041.	2.4	4

CHUNMING TANG

#	Article	IF	CITATIONS
37	Two infinite classes of rotation symmetric bent functions with simple representation. Applicable Algebra in Engineering, Communications and Computing, 2018, 29, 197-208.	0.5	1
38	Two classes of linear codes and their weight distributions. Applicable Algebra in Engineering, Communications and Computing, 2018, 29, 209-225.	0.5	2
39	Further Results on Generalized Bent Functions and Their Complete Characterization. IEEE Transactions on Information Theory, 2018, 64, 5441-5452.	2.4	18
40	Explicit characterization of two classes of regular bent functions. Applicable Algebra in Engineering, Communications and Computing, 2018, 29, 529-544.	0.5	1
41	Generalized Plateaued Functions and Admissible (Plateaued) Functions. IEEE Transactions on Information Theory, 2017, 63, 6139-6148.	2.4	13
42	Complete Characterization of Generalized Bent and 2 ^k -Bent Boolean Functions. IEEE Transactions on Information Theory, 2017, 63, 4668-4674.	2.4	26
43	A class of hyper-bent functions and Kloosterman sums. Cryptography and Communications, 2017, 9, 647-664.	1.4	1
44	Generic Construction of Bent Functions and Bent Idempotents With Any Possible Algebraic Degrees. IEEE Transactions on Information Theory, 2017, 63, 6149-6157.	2.4	25
45	Linear codes with few weights from inhomogeneous quadratic functions. Designs, Codes, and Cryptography, 2017, 83, 691-714.	1.6	23
46	A class of linear codes with a few weights. Cryptography and Communications, 2017, 9, 93-116.	1.4	7
47	Special values of Kloosterman sums and binomial bent functions. Finite Fields and Their Applications, 2016, 41, 113-131.	1.0	2
48	Linear Codes With Two or Three Weights From Weakly Regular Bent Functions. IEEE Transactions on Information Theory, 2016, 62, 1166-1176.	2.4	115
49	Binary Linear Codes With Few Weights. IEEE Communications Letters, 2016, 20, 208-211.	4.1	12
50	Two-Weight and Three-Weight Linear Codes From Square Functions. IEEE Communications Letters, 2016, 20, 29-32.	4.1	35
51	Constructing vectorial Boolean functions with high algebraic immunity based on group decomposition. International Journal of Computer Mathematics, 2015, 92, 451-462.	1.8	6
52	Cryptography on twisted Edwards curves over local fields. Science China Information Sciences, 2015, 58, 1-15.	4.3	1
53	Implementing optimized pairings with elliptic nets. Science China Information Sciences, 2014, 57, 1-10.	4.3	3
54	A note on cyclic codes from APN functions. Applicable Algebra in Engineering, Communications and Computing, 2014, 25, 21-37.	0.5	7

4

#	Article	IF	CITATIONS
55	Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Physical Review A, 2013, 87, .	2.5	28