Chinna Bathula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/220288/publications.pdf

Version: 2024-02-01

48 1,145 19 32 g-index

48 48 48 48 856

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Sonochemically exfoliated polymer-carbon nanotube interface for high performance supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 1792-1799.	9.4	47
2	Investigation of mechanism of heavy metals (Cr6+, Pb2+& Zn2+) adsorption from aqueous medium using rice husk ash: Kinetic and thermodynamic approach. Chemosphere, 2022, 286, 131796.	8.2	78
3	Graphitic carbon-encapsulated V2O5 nanocomposites as a superb photocatalyst for crystal violet degradation. Environmental Research, 2022, 205, 112201.	7.5	18
4	Precipitation of (Mg/Fe-CTAB) - Layered double hydroxide nanoparticles onto sewage sludge for producing novel sorbent to remove Congo red and methylene blue dyes from aqueous environment. Chemosphere, 2022, 291, 132693.	8.2	15
5	Visible light-driven photocatalytic rapid degradation of organic contaminants engaging manganese dioxide-incorporated iron oxide three dimensional nanoflowers. Journal of Colloid and Interface Science, 2022, 608, 2347-2357.	9.4	22
6	Biogenic palladium nanoparticles: An effectual environmental benign catalyst for organic coupling reactions. Journal of Industrial and Engineering Chemistry, 2022, 106, 52-68.	5.8	10
7	Fabrication of Multi-functionalized Graphene Oxide Doped Alginate Hybrid Spheres for Enhanced Fluoride Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 216-228.	3.7	14
8	Nanostructurally engineered TiO2 embedded Mentha aquatica biowaste derived carbon for supercapacitor applications. Chemosphere, 2022, 289, 133197.	8.2	16
9	Sonication-supported synthesis of cobalt oxide assembled on an N-MWCNT composite for electrochemical supercapacitors via three-electrode configuration. Scientific Reports, 2022, 12, 1998.	3.3	17
10	Ballâ€milling route to design hierarchical nanohybrid cobalt oxide structures with cellulose nanocrystals interface for supercapacitors. International Journal of Energy Research, 2022, 46, 8398-8412.	4.5	9
11	Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide. Surfaces and Interfaces, 2022, 30, 101910.	3.0	10
12	A zero-dimensional/two-dimensional Ag–Ag2S–CdS plasmonic nanohybrid for rapid photodegradation of organic pollutant by solar light. Chemosphere, 2022, 296, 133973.	8.2	27
13	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	4.1	33
14	Templateâ€free synthesis of oneâ€dimensional cobalt sulfide nanorod array as an attractive architecture for overall water splitting. International Journal of Energy Research, 2021, 45, 2785-2796.	4.5	19
15	ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water. Environmental Pollution, 2021, 272, 116018.	7.5	30
16	Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors. Dyes and Pigments, 2021, 186, 108973.	3.7	9
17	A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. Journal of Hazardous Materials, 2021, 407, 124360.	12.4	163
18	The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11580-11594.	10.3	58

#	Article	IF	CITATIONS
19	Enhanced removal of organic dye by activated carbon decorated TiO2 nanoparticles from Mentha Aquatica leaves via ultrasonic approach. Ceramics International, 2021, 47, 8732-8739.	4.8	30
20	Suppressed photocatalytic activity of ZnO based Core@Shell and RCore@Shell nanostructure incorporated in the cellulose nanofiber. Chemosphere, 2021, 269, 129311.	8.2	13
21	Efficient synthesis of acetylene-bridged carbazole-based dimer for electrochemical energy storage: Experimental and DFT studies. Journal of Electroanalytical Chemistry, 2021, 889, 115225.	3.8	2
22	Ultrasonication-mediated nitrogen-doped multiwalled carbon nanotubes involving carboxy methylcellulose composite for solid-state supercapacitor applications. Scientific Reports, 2021, 11, 9918.	3.3	24
23	In situ growth of 1D/2D CdS–Bi2MoO6 core shell heterostructures for synergistic enhancement of photocatalytic performance under visible light. Chemosphere, 2021, 275, 130086.	8.2	37
24	Catalytic decontamination of organic/inorganic pollutants in water and green H2 generation using nanoporous SnS2 micro-flower structured film. Journal of Hazardous Materials, 2021, 417, 126105.	12.4	48
25	Multi-functional Co3O4 embedded carbon nanotube architecture for oxygen evolution reaction and benzoin oxidation. Journal of Molecular Liquids, 2021, 343, 117616.	4.9	7
26	Highly efficient solid-state synthesis of Co3O4 on multiwalled carbon nanotubes for supercapacitors. Journal of Alloys and Compounds, 2021, 887, 161307.	5.5	67
27	Ultrasonically driven green synthesis of palladium nanoparticles by Coleus amboinicus for catalytic reduction and Suzuki-Miyaura reaction. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111026.	5.0	42
28	Bisâ€Diketopyrrolopyrrole and Carbazoleâ€Based Terpolymer for High Performance Organic Fieldâ€Effect Transistors and Infraâ€Red Photodiodes. Macromolecular Chemistry and Physics, 2019, 220, 1900287.	2.2	19
29	Facile Synthesis of Triphenylamine Based Hyperbranched Polymer for Organic Field Effect Transistors. Nanomaterials, 2019, 9, 1787.	4.1	11
30	Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications. International Journal of Biological Macromolecules, 2019, 126, 352-358.	7.5	35
31	Facile synthesis and optoelectronic exploration of silylthiophene substituted benzodithiophene polymer for organic field effect transistors. Journal of Organometallic Chemistry, 2019, 880, 317-321.	1.8	7
32	Acceptor Unit Effects for Ambipolar Organic Field-Effect Transistors Based on TIPS-Benzodithiophene Copolymers. Macromolecular Research, 2019, 27, 90-95.	2.4	10
33	Hole-induced polymerized interfacial film of polythiophene as co-sensitizer and back-electron injection barrier layer in dye-sensitized TiO2 nanotube array. Journal of Alloys and Compounds, 2019, 781, 589-594.	5.5	11
34	Synthesis and photophysical investigations of pyromellitic diimide based small molecules. Inorganic Chemistry Communication, 2019, 102, 20-24.	3.9	5
35	Study of PEDOT and analogous polymer film as back-electron injection barrier and electrical charge storing materials. Materials Letters, 2018, 211, 1-4.	2.6	4
36	Synthesis, Characterization and Photophysical Studies of Tricoumarin-Pyridines. Journal of Fluorescence, 2017, 27, 419-425.	2.5	7

#	Article	IF	CITATION
37	Synthesis and Optoelectronic Exploration of Highly Conjugated 1,3,4-Oxadiazole Containing Donor-Ï∈-Acceptor Chromophores. ChemistrySelect, 2017, 2, 1793-1801.	1.5	8
38	Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances. Journal of Molecular Structure, 2017, 1139, 125-129.	3.6	4
39	Optical, Electrochemical and Thermal Studies of Conjugated Polymers Synthesized by Eutectic Melt Reaction. Journal of Fluorescence, 2017, 27, 1067-1073.	2.5	2
40	Donor-acceptor polymers by solid state eutectic melt reaction for optoelectronic applications. Journal of Alloys and Compounds, 2017, 720, 473-477.	5.5	1
41	Green synthesis of palladium nanoparticles using fenugreek tea and their catalytic applications in organic reactions. Materials Letters, 2017, 205, 138-141.	2.6	40
42	Synthesis and Photophysical Studies of Thiadiazole [3,4-c] pyridine Copolymer Based Organic Field-Effect Transistors. Journal of Fluorescence, 2016, 26, 1045-1052.	2.5	8
43	Synthesis, Characterization and Optoelectronic Properties of Benzodithiophene Based Copolymers for Application in Solar Cells. Journal of Fluorescence, 2016, 26, 371-376.	2.5	11
44	Concentration-Dependent Pyrene-Driven Self-Assembly in Benzo[1,2- <i>b</i> :4,5- <i>b</i> :′]dithiophene (BDT)–Thienothiophene (TT)–Pyrene Copolymers. Macromolecules, 2015, 48, 3509-3515.	4.8	23
45	Synthesis and Characterization of Benzodithiophene-Based Copolymers for Polymer Solar Cells. Molecular Crystals and Liquid Crystals, 2014, 598, 104-110.	0.9	3
46	Effect of backbone structures on photovoltaic properties in naphthodithiopheneâ€based copolymers. Journal of Polymer Science Part A, 2014, 52, 305-312.	2.3	5
47	Naphtho[1,2-b:5,6-b′]dithiophene-based copolymers for applications to polymer solar cells. Polymer Chemistry, 2013, 4, 2132.	3.9	24
48	New TIPS-substituted benzo $[1,2-b:4,5-b\hat{a}\in^2]$ dithiophene-based copolymers for application in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 22224.	6.7	42