Lorenzo Massimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202781/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of operating conditions on PM oxidative potential assays. Atmospheric Environment, 2022, 268, 118802.	1.9	7
2	Effects of COVID-19 lockdown on PM10 composition and sources in the Rome Area (Italy) by elements' chemical fractionation-based source apportionment. Atmospheric Research, 2022, 266, 105970.	1.8	14
3	Biomonitoring of element contamination in bees and beehive products in the Rome province (Italy). Environmental Science and Pollution Research, 2022, 29, 36057-36074.	2.7	9
4	Simple and efficient method to detach intact PM10 from field filters: Elements recovery assessment. Atmospheric Pollution Research, 2022, 13, 101417.	1.8	1
5	Morpho-physiological and molecular responses of Lepidium sativum L. seeds induced by bismuth exposure. Science of the Total Environment, 2022, 831, 154896.	3.9	7
6	A New Method for the Assessment of the Oxidative Potential of Both Water-Soluble and Insoluble PM. Atmosphere, 2022, 13, 349.	1.0	5
7	On the Redox-Activity and Health-Effects of Atmospheric Primary and Secondary Aerosol: Phenomenology. Atmosphere, 2022, 13, 704.	1.0	7
8	Performance of bees and beehive products as indicators of elemental tracers of atmospheric pollution in sites of the Rome province (Italy). Ecological Indicators, 2022, 140, 109061.	2.6	7
9	Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a multi-source polluted area of Central Italy. Ecological Indicators, 2021, 120, 106921.	2.6	2
10	Seasonal Variations in the Chemical Composition of Indoor and Outdoor PM10 in University Classrooms. Sustainability, 2021, 13, 2263.	1.6	5
11	An Analytical Method for the Biomonitoring of Mercury in Bees and Beehive Products by Cold Vapor Atomic Fluorescence Spectrometry. Molecules, 2021, 26, 4878.	1.7	14
12	Peroxisomal PEX7 Receptor Affects Cadmium-Induced ROS and Auxin Homeostasis in Arabidopsis Root System. Antioxidants, 2021, 10, 1494.	2.2	9
13	An optimized method for sample preparation and elemental analysis of extra-virgin olive oil by inductively coupled plasma mass spectrometry. Food Chemistry, 2021, 360, 130027.	4.2	17
14	Identification and spatial mapping of tracers of PM10 emission sources using a high spatial resolution distributed network in an urban setting. Atmospheric Research, 2021, 262, 105771.	1.8	5
15	Multielement Characterization and Antioxidant Activity of Italian Extra-Virgin Olive Oils. Frontiers in Chemistry, 2021, 9, 769620.	1.8	6
16	Assessment of the effects of atmospheric pollutants using the animal model Caenorhabditis elegans. Environmental Research, 2020, 191, 110209.	3.7	8
17	Effectiveness of Different Sample Treatments for the Elemental Characterization of Bees and Beehive Products. Molecules, 2020, 25, 4263.	1.7	25
18	Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. Environmental Pollution, 2020, 266, 115271.	3.7	21

LORENZO MASSIMI

#	Article	lF	CITATIONS
19	High spatial resolution analysis of polybrominated diphenyl ethers (PBDEs) using transplanted lichen Evernia prunastri: A case study in central Italy. Science of the Total Environment, 2020, 742, 140590.	3.9	Ο
20	Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. Atmosphere, 2020, 11, 917.	1.0	35
21	Innovative Characterization of Particulate Matter Deposited on Urban Vegetation Leaves through the Application of a Chemical Fractionation Procedure. International Journal of Environmental Research and Public Health, 2020, 17, 5717.	1.2	10
22	Fungi and Arsenic: Tolerance and Bioaccumulation by Soil Saprotrophic Species. Applied Sciences (Switzerland), 2020, 10, 3218.	1.3	12
23	Biomonitoring of Mercury in Hair among a Group of Eritreans (Africa). International Journal of Environmental Research and Public Health, 2020, 17, 1911.	1.2	10
24	A new rapid treatment of human hair for elemental determination by inductively coupled mass spectrometry. Analytical Methods, 2020, 12, 1906-1918.	1.3	32
25	Evaluation of the Efficiency of Arundo donax L. Leaves as Biomonitors for Atmospheric Element Concentrations in an Urban and Industrial Area of Central Italy. Atmosphere, 2020, 11, 226.	1.0	18
26	Spatial distribution of levoglucosan and alternative biomass burning tracers in atmospheric aerosols, in an urban and industrial hot-spot of Central Italy. Atmospheric Research, 2020, 239, 104904.	1.8	22
27	Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 2020, 151, 729-742.	2.8	47
28	High resolution spatial mapping of element concentrations in PM10: A powerful tool for localization of emission sources. Atmospheric Research, 2020, 244, 105060.	1.8	20
29	A prophylactic multi-strain probiotic treatment to reduce the absorption of toxic elements: In-vitro study and biomonitoring of breast milk and infant stools. Environment International, 2019, 130, 104818.	4.8	50
30	A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles. Environmental Pollution, 2019, 253, 19-28.	3.7	26
31	Potential of PM-selected components to induce oxidative stress and root system alteration in a plant model organism. Environment International, 2019, 132, 105094.	4.8	22
32	Simple and rapid method for the determination of mercury in human hair by cold vapour generation atomic fluorescence spectrometry. Microchemical Journal, 2019, 150, 104186.	2.3	25
33	Ultrafine, fine and coarse airborne particle mass concentration in workplaces. Atmospheric Pollution Research, 2019, 10, 1685-1690.	1.8	19
34	Lichen transplants as indicators of atmospheric element concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecological Indicators, 2019, 101, 759-769.	2.6	37
35	Food Waste Materials as Low-Cost Adsorbents for the Removal of Volatile Organic Compounds from Wastewater. Materials, 2019, 12, 4242.	1.3	10
36	Evidences of copper nanoparticle exposure in indoor environments: Long-term assessment, high-resolution field emission scanning electron microscopy evaluation, in silico respiratory dosimetry study and possible health implications. Science of the Total Environment, 2019, 653, 1192-1203.	3.9	26

LORENZO MASSIMI

#	Article	IF	CITATIONS
37	Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions. Materials, 2018, 11, 334.	1.3	31
38	Food Waste Materials Appear Efficient and Low-cost Adsorbents for the Removal of Organic and Inorganic Pollutants from Wastewater. Research & Development in Material Science, 2018, 5, .	0.1	1
39	Monitoring and Evaluation of Terni (Central Italy) Air Quality through Spatially Resolved Analyses. Atmosphere, 2017, 8, 200.	1.0	18
40	Monitoring and Evaluation of Terni (Central Italy) Air Quality through Spatially Resolved Analyses. Proceedings (mdpi), 2017, 1, 680.	0.2	0