
Michael Mace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2202718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modernising grip dynamometry: Inter-instrument reliability between GripAble and Jamar. BMC Musculoskeletal Disorders, 2022, 23, 80.	1.9	8
2	GripAble: An accurate, sensitive and robust digital device for measuring grip strength. Journal of Rehabilitation and Assistive Technologies Engineering, 2022, 9, 205566832210784.	0.9	6
3	Influence of visual-coupling on bimanual coordination in unilateral spastic cerebral palsy. , 2019, 2019, 1013-1018.		2
4	Bimanual coordination during a physically coupled task in unilateral spastic cerebral palsy children. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 1.	4.6	133
5	Elasticity improves handgrip performance and user experience during visuomotor control. Royal Society Open Science, 2017, 4, 160961.	2.4	15
6	SITAR: a system for independent task-oriented assessment and rehabilitation. Journal of Rehabilitation and Assistive Technologies Engineering, 2017, 4, 205566831772963.	0.9	9
7	Collaborative Gaming to Enhance Patient Performance During Virtual Therapy. Biosystems and Biorobotics, 2017, , 375-379.	0.3	2
8	A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation. PLoS Computational Biology, 2017, 13, e1005326.	3.2	26
9	Balancing the playing field: collaborative gaming for physical training. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 116.	4.6	47
10	Democratizing Neurorehabilitation: How Accessible are Low-Cost Mobile-Gaming Technologies for Self-Rehabilitation of Arm Disability in Stroke?. PLoS ONE, 2016, 11, e0163413.	2.5	31
11	A Wearable Automated System to Quantify Parkinsonian Symptoms Enabling Closed Loop Deep Brain Stimulation. Lecture Notes in Computer Science, 2016, , 8-19.	1.3	3
12	Investigating Tactile Sensation in the Hand Using a Robot-Based Tactile Assessment Tool. Lecture Notes in Computer Science, 2016, , 17-24.	1.3	1
13	Comparison of flexible and rigid hand-grip control during a feed-forward visual tracking task. , 2015, ,		5
14	An automated approach towards detecting complex behaviours in deep brain oscillations. Journal of Neuroscience Methods, 2014, 224, 66-78.	2.5	5
15	Augmenting neuroprosthetic hand control through evaluation of a bioacoustic interface. , 2013, , .		0
16	A heterogeneous framework for real-time decoding of bioacoustic signals: Applications to assistive interfaces and prosthesis control. Expert Systems With Applications, 2013, 40, 5049-5060.	7.6	13
17	Robust real-time identification of tongue movement commands from interferences. Neurocomputing, 2012, 80, 83-92.	5.9	10
18	Ensemble classification for robust discrimination of multi-channel, multi-class tongue-movement ear pressure signals. , 2011, 2011, 1733-6.		7

MICHAEL MACE

#	Article	IF	CITATIONS
19	Multivariate Bayesian classification of tongue movement ear pressure signals based on the wavelet packet transform. , 2010, , .		3
20	Real-time implementation of a non-invasive tongue-based human-robot interface. , 2010, , .		10
21	Multi-layer neural network classification of tongue movement ear pressure signal for human machine interface. , 2010, , .		2
22	A DCT-Gaussian classification scheme for human-robot interface. , 2009, , .		1
23	Tongue in cheek: a novel concept in assistive human machine interface. Journal of Assistive Technologies, 2009, 3, 14-26.	0.8	3