Aron Walsh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/220236/aron-walsh-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

198 401 42,272 99 h-index g-index citations papers 48,909 8.04 483 9.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
401	Breaking the Aristotype: Featurization of Polyhedral Distortions in Perovskite Crystals. <i>Chemistry of Materials</i> , 2022 , 34, 562-573	9.6	1
400	Role of ripples in altering the electronic and chemical properties of graphene <i>Journal of Chemical Physics</i> , 2022 , 156, 054708	3.9	1
399	Lone pair driven anisotropy in antimony chalcogenide semiconductors <i>Physical Chemistry Chemical Physics</i> , 2022 ,	3.6	3
398	Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. <i>Nature Photonics</i> , 2022 , 16, 235-241	33.9	19
397	Environmental Stability of Crystals: A Greedy Screening Chemistry of Materials, 2022, 34, 2545-2552	9.6	O
396	Interfacial Dipole Layer Enables High-Performance Heterojunctions for Photoelectrochemical Water Splitting. <i>ACS Energy Letters</i> , 2022 , 7, 1392-1402	20.1	2
395	Mixed-Dimensional Formamidinium Bismuth Iodides Featuring In-Situ Formed Type-I Band Structure for Convolution Neural Networks <i>Advanced Science</i> , 2022 , e2200168	13.6	2
394	Machine learned calibrations to high-throughput molecular excited state calculations <i>Journal of Chemical Physics</i> , 2022 , 156, 134116	3.9	2
393	High Power Irradiance Dependence of Charge Species Dynamics in Hybrid Perovskites and Kinetic Evidence for Transient Vibrational Stark Effect in Formamidinium. <i>Nanomaterials</i> , 2022 , 12, 1616	5.4	
392	Self-trapping in bismuth-based semiconductors: Opportunities and challenges from optoelectronic devices to quantum technologies. <i>Applied Physics Letters</i> , 2021 , 119, 220501	3.4	1
391	Atomistic models of metal halide perovskites. <i>Matter</i> , 2021 , 4, 3867-3873	12.7	2
390	Asymmetric carrier transport in flexible interface-type memristor enables artificial synapses with sub-femtojoule energy consumption. <i>Nanoscale Horizons</i> , 2021 , 6, 987-997	10.8	5
389	Enhanced visible light absorption in layered CsBiBr through mixed-valence Sn(ii)/Sn(iv) doping. <i>Chemical Science</i> , 2021 , 12, 14686-14699	9.4	8
388	Bismuth Doping Alters Structural Phase Transitions in Methylammonium Lead Tribromide Single Crystals. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 2749-2755	6.4	6
387	Rapid Recombination by Cadmium Vacancies in CdTe. ACS Energy Letters, 2021, 6, 1392-1398	20.1	12
386	Prediction of high thermoelectric performance in the low-dimensional metal halide Cs3Cu2I5. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	7
385	Emerging inorganic solar cell efficiency tables (version 2). JPhys Energy, 2021, 3, 032003	4.9	15

(2021-2021)

384	BiSbWO6: Properties of a mixed 5s/6s lone-pair-electron system. <i>Chemical Physics</i> , 2021 , 544, 111117	2.3	Ο
383	Best practices in machine learning for chemistry. <i>Nature Chemistry</i> , 2021 , 13, 505-508	17.6	61
382	Ab initio calculation of the detailed balance limit to the photovoltaic efficiency of single p-n junction kesterite solar cells. <i>Applied Physics Letters</i> , 2021 , 118, 243905	3.4	1
381	Giant Huang-Rhys Factor for Electron Capture by the Iodine Intersitial in Perovskite Solar Cells. Journal of the American Chemical Society, 2021 , 143, 9123-9128	16.4	11
380	Assessment of interstitial potentials for rapid prediction of absolute band energies in crystals. Journal of Chemical Physics, 2021 , 155, 024113	3.9	0
379	Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells. <i>Annual Review of Condensed Matter Physics</i> , 2021 , 12, 95-109	19.7	15
378	Multi-phonon proton transfer pathway in a molecular organic ferroelectric crystal. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 2885-2890	3.6	2
377	Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 16006-16015	13	6
376	Perovskite-inspired materials for photovoltaics and beyond-from design to devices. <i>Nanotechnology</i> , 2021 , 32, 132004	3.4	47
375	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021,	21.8	16
374	Passivation Properties and Formation Mechanism of Amorphous Halide Perovskite Thin Films. <i>Advanced Functional Materials</i> , 2021 , 31, 2010330	15.6	4
373	Solvent engineered synthesis of layered SnO for high-performance anodes. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	4
372	Phase Diagram and Cation Dynamics of Mixed MA1NFAxPbBr3 Hybrid Perovskites. <i>Chemistry of Materials</i> , 2021 , 33, 5926-5934	9.6	6
371	Low Barrier for Exciton Self-Trapping Enables High Photoluminescence Quantum Yield in CsCuI. Journal of Physical Chemistry Letters, 2021 , 12, 8447-8452	6.4	6
370	Hidden spontaneous polarisation in the chalcohalide photovoltaic absorber SnSbSI. <i>Materials Horizons</i> , 2021 , 8, 2709-2716	14.4	8
369	Evolutionary exploration of polytypism in lead halide perovskites. <i>Chemical Science</i> , 2021 , 12, 12165-12	2137.34	4
368	Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites. <i>Chemical Science</i> , 2021 , 12, 6129-6135	9.4	4
367	Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases <i>Science</i> , 2021 , 374, 1598-1605	33.3	28

366	Hexagonal Stacking Faults Act as Hole-Blocking Layers in Lead Halide Perovskites. <i>ACS Energy Letters</i> , 2020 , 5, 2231-2233	20.1	8
365	Ligand engineering in Cu(II) paddle wheel metal®rganic frameworks for enhanced semiconductivity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13160-13165	13	6
364	Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. <i>Energy and Environmental Science</i> , 2020 , 13, 1481-1491	35.4	58
363	Quick-start guide for first-principles modelling of point defects in crystalline materials. <i>JPhys Energy</i> , 2020 , 2, 036001	4.9	8
362	Polymorph exploration of bismuth stannate using first-principles phonon mode mapping <i>Chemical Science</i> , 2020 , 11, 7904-7909	9.4	2
361	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. <i>Nature Energy</i> , 2020 , 5, 35-49	62.3	369
360	Sn 5s2 lone pairs and the electronic structure of tin sulphides: A photoreflectance, high-energy photoemission, and theoretical investigation. <i>Physical Review Materials</i> , 2020 , 4,	3.2	4
359	CarrierCapture.jl: Anharmonic Carrier Capture. <i>Journal of Open Source Software</i> , 2020 , 5, 2102	5.2	8
358	Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries. <i>IOP SciNotes</i> , 2020 , 1, 024805	1.2	3
357	Assessment of dynamic structural instabilities across 24 cubic inorganic halide perovskites. <i>Journal of Chemical Physics</i> , 2020 , 152, 024703	3.9	28
356	Descriptors for Electron and Hole Charge Carriers in Metal Oxides. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 438-444	6.4	15
355	Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1🛭)Br6 double perovskite thin films. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 21780-21788	13	26
354	Suppression of phase transitions and glass phase signatures in mixed cation halide perovskites. <i>Nature Communications</i> , 2020 , 11, 5103	17.4	25
353	Manganese Porphyrin Interface Engineering in Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7353-7363	6.1	7
352	Modeling the dielectric constants of crystals using machine learning. <i>Journal of Chemical Physics</i> , 2020 , 153, 024503	3.9	12
351	Thermodynamic Stabilization of Mixed-Halide Perovskites against Phase Segregation. <i>Cell Reports Physical Science</i> , 2020 , 1, 100120	6.1	27
350	Probing the ionic defect landscape in halide perovskite solar cells. <i>Nature Communications</i> , 2020 , 11, 6098	17.4	32
349	Sustainable lead management in halide perovskite solar cells. <i>Nature Sustainability</i> , 2020 , 3, 1044-1051	22.1	40

(2019-2020)

348	Chemical Trends in the Lattice Thermal Conductivity of Li(Ni, Mn, Co)O2 (NMC) Battery Cathodes. <i>Chemistry of Materials</i> , 2020 , 32, 7542-7550	9.6	14
347	Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 18859-18867	3.8	3
346	Lattice Compression Increases the Activation Barrier for Phase Segregation in Mixed-Halide Perovskites. <i>ACS Energy Letters</i> , 2020 , 5, 3152-3158	20.1	37
345	A density functional theory study on the interface stability between CsPbBr3 and Cul. <i>AIP Advances</i> , 2020 , 10, 085023	1.5	1
344	The Holey Grail of Transparent Electronics. <i>Matter</i> , 2020 , 3, 604-606	12.7	2
343	Assessing the defect tolerance of kesterite-inspired solar absorbers. <i>Energy and Environmental Science</i> , 2020 , 13, 3489-3503	35.4	17
342	Crystal structure and metallization mechanism of the Fradical metal. Chemical Science, 2020, 11, 11699-	1\$7404	8
341	Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. <i>Nature</i> , 2020 , 580, 360-366	50.4	155
340	Data-Driven Discovery of Photoactive Quaternary Oxides Using First-Principles Machine Learning. <i>Chemistry of Materials</i> , 2019 , 31, 7221-7230	9.6	26
339	Highly Anisotropic Thermal Transport in LiCoO. Journal of Physical Chemistry Letters, 2019, 10, 5552-555	5 6 .4	12
338	In situ observation of picosecond polaron self-localisation in ⊞eO photoelectrochemical cells. <i>Nature Communications</i> , 2019 , 10, 3962	17.4	52
337	Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal-organic framework. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1883-1893	3	18
336	Room Temperature Metallic Conductivity in a Metal-Organic Framework Induced by Oxidation. Journal of the American Chemical Society, 2019 , 141, 16323-16330	16.4	49
335	Atomistic insights into the orderdisorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 312-321	13	14
334	Lattice strain causes non-radiative losses in halide perovskites. <i>Energy and Environmental Science</i> , 2019 , 12, 596-606	35.4	211
333	Lone-pair effect on carrier capture in Cu2ZnSnS4 solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 2686-2693	13	33
332	Dielectric and ferroic properties of metal halide perovskites. APL Materials, 2019, 7, 010901	5.7	108
331	Redox-active metal b rganic frameworks for energy conversion and storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16571-16597	13	127

330	Emerging inorganic solar cell efficiency tables (Version 1). JPhys Energy, 2019, 1, 032001	4.9	39
329	Effect of oxygen deficiency on the excited state kinetics of WO and implications for photocatalysis. <i>Chemical Science</i> , 2019 , 10, 5667-5677	9.4	56
328	Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites. ACS Energy Letters, 2019, 4, 132	121632	7 76
327	Donor and acceptor characteristics of native point defects in GaN. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 335104	3	28
326	Vacancy-Driven Stabilization of the Cubic Perovskite Polymorph of CsPbI3. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 9735-9744	3.8	32
325	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5972-5979	16.4	170
324	Low-dimensional formamidinium lead perovskite architectures via controllable solvent intercalation. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3945-3951	7.1	15
323	Quick-start guide for first-principles modelling of semiconductor interfaces. <i>JPhys Energy</i> , 2019 , 1, 016	00 19	7
322	Living in the salt-cocrystal continuum: indecisive organic complexes with thermochromic behaviour. CrystEngComm, 2019 , 21, 1626-1634	3.3	16
321	Finding a junction partner for candidate solar cell absorbers enargite and bournonite from electronic band and lattice matching. <i>Journal of Applied Physics</i> , 2019 , 125, 055703	2.5	13
320	Stability and flexibility of heterometallic formate perovskites with the dimethylammonium cation: pressure-induced phase transitions. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 4200-4208	3.6	9
319	Impact of nonparabolic electronic band structure on the optical and transport properties of photovoltaic materials. <i>Physical Review B</i> , 2019 , 99,	3.3	33
318	Predicting synthesizability. Journal Physics D: Applied Physics, 2019, 52,	3	161
317	Role of Electron B honon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. <i>ACS Energy Letters</i> , 2019 , 4, 2205-2212	20.1	31
316	Intrinsic doping limit and defect-assisted luminescence in Cs4PbBr6. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20254-20261	13	33
315	Anharmonic lattice relaxation during nonradiative carrier capture. <i>Physical Review B</i> , 2019 , 100,	3.3	18
314	Status of materials and device modelling for kesterite solar cells. <i>JPhys Energy</i> , 2019 , 1, 042004	4.9	11
313	Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst. <i>Advanced Science</i> , 2019 , 6, 19	023.80	12

(2018-2019)

312	Crystal Engineering of Bi2WO6 to Polar Aurivillius-Phase Oxyhalides. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 29155-29161	3.8	9
311	SMACT: Semiconducting Materials by Analogy and Chemical Theory. <i>Journal of Open Source Software</i> , 2019 , 4, 1361	5.2	10
310	CO2 Photoreduction: Heterostructure Engineering of a Reverse Water Gas Shift Photocatalyst (Adv. Sci. 22/2019). <i>Advanced Science</i> , 2019 , 6, 1970134	13.6	1
309	Identification of Lone-Pair Surface States on Indium Oxide. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 1700-1709	3.8	16
308	Accelerated optimization of transparent, amorphous zinc-tin-oxide thin films for optoelectronic applications. <i>APL Materials</i> , 2019 , 7, 022509	5.7	12
307	Materials discovery by chemical analogy: role of oxidation states in structure prediction. <i>Faraday Discussions</i> , 2018 , 211, 553-568	3.6	14
306	Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH 3 NH 3 PbI 3 *. <i>Chinese Physics Letters</i> , 2018 , 35, 036104	1.8	107
305	Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8507-8513	13	28
304	Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018 , 9, 2196-2201	6.4	72
303	Identification of Killer Defects in Kesterite Thin-Film Solar Cells. ACS Energy Letters, 2018, 3, 496-500	20.1	88
302	Point defect engineering in thin-film solar cells. <i>Nature Reviews Materials</i> , 2018 , 3, 194-210	73.3	176
301	Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. <i>ACS Nano</i> , 2018 , 12, 8081-8090	16.7	123
300	Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal-Organic Framework. Journal of the American Chemical Society, 2018 , 140, 10562-10569	16.4	48
299	Machine learning for molecular and materials science. <i>Nature</i> , 2018 , 559, 547-555	50.4	1282
298	Taking Control of Ion Transport in Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1983-1990	20.1	121
297	Role of electron-phonon coupling and thermal expansion on band gaps, carrier mobility, and interfacial offsets in kesterite thin-film solar cells. <i>Applied Physics Letters</i> , 2018 , 112, 193903	3.4	11
296	Dynamic symmetry breaking and spin splitting in metal halide perovskites. <i>Physical Review B</i> , 2018 , 98,	3.3	38
295	Heterometallic perovskite-type metal-organic framework with an ammonium cation: structure, phonons, and optical response of [NH]NaCrAl(HCOO) ($x = 0, 0.025$ and 0.5). <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 22284-22295	3.6	15

294	Opposing effects of stacking faults and antisite domain boundaries on the conduction band edge in kesterite quaternary semiconductors. <i>Physical Review Materials</i> , 2018 , 2,	3.2	12
293	Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides. <i>Physical Review Materials</i> , 2018 , 2,	3.2	46
292	Chapter 6:Computational Design of Photovoltaic Materials 2018 , 176-197		1
291	Computer-aided design of metal chalcohalide semiconductors: from chemical composition to crystal structure. <i>Chemical Science</i> , 2018 , 9, 1022-1030	9.4	35
290	Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1067-1074	13	64
289	Water oxidation catalysed by quantum-sized BiVO4. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24965-24	9:730	7
288	Open-circuit voltage deficit in Cu2ZnSnS4 solar cells by interface bandgap narrowing. <i>Applied Physics Letters</i> , 2018 , 113, 212103	3.4	12
287	Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11905-11910	11.5	52
286	Oxidation states and ionicity. <i>Nature Materials</i> , 2018 , 17, 958-964	27	91
285	Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid OrganicIhorganic Perovskite [CH3NH3]PbBr3. <i>Chemistry of Materials</i> , 2018 , 30, 8782-8788	9.6	19
284	Stability and electronic properties of planar defects in quaternary I2-II-IV-VI4 semiconductors. Journal of Applied Physics, 2018 , 124, 165705	2.5	5
283	Preface for Special Topic: Earth abundant materials in solar cells. <i>APL Materials</i> , 2018 , 6, 084401	5.7	2
282	An Unusual Phase Transition Driven by Vibrational Entropy Changes in a Hybrid OrganicIhorganic Perovskite. <i>Angewandte Chemie</i> , 2018 , 130, 9070-9074	3.6	4
281	An Unusual Phase Transition Driven by Vibrational Entropy Changes in a Hybrid Organic-Inorganic Perovskite. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8932-8936	16.4	30
2 80	Prediction of multiband luminescence due to the gallium vacancy bxygen defect complex in GaN. <i>Applied Physics Letters</i> , 2018 , 112, 262104	3.4	15
279	Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. <i>Chemistry of Materials</i> , 2017 , 29, 1964-1988	9.6	87
278	Self-Consistent Hybrid Functional Calculations: Implications for Structural, Electronic, and Optical Properties of Oxide Semiconductors. <i>Nanoscale Research Letters</i> , 2017 , 12, 19	5	31
277	The Steady Rise of Kesterite Solar Cells. ACS Energy Letters, 2017 , 2, 776-779	20.1	144

(2017-2017)

276	The Organic Secondary Building Unit: Strong Intermolecular Unteractions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3619-3622	16.4	59
275	Chemical bonding at the metalorganic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO2. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6226-6232	13	15
274	Chemical and Lattice Stability of the Tin Sulfides. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 6446-6454	3.8	52
273	Is iron unique in promoting electrical conductivity in MOFs?. Chemical Science, 2017, 8, 4450-4457	9.4	106
272	DFT investigation into the underperformance of sulfide materials in photovoltaic applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9132-9140	13	16
271	Trimethylsulfonium Lead Triiodide: An Air-Stable Hybrid Halide Perovskite. <i>Inorganic Chemistry</i> , 2017 , 56, 6302-6309	5.1	35
270	Electron Counting in Solids: Oxidation States, Partial Charges, and Ionicity. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2074-2075	6.4	50
269	Lattice dynamics of the tin sulphides SnS, SnS and SnS: vibrational spectra and thermal transport. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 12452-12465	3.6	108
268	Vacuum-annealing induces sub-surface redox-states in surfactant-structured ⊞e2O3 photoanodes prepared by ink-jet printing. <i>Applied Catalysis B: Environmental</i> , 2017 , 211, 289-295	21.8	14
267	Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1600445	1.6	9
266	Designing porous electronic thin-film devices: band offsets and heteroepitaxy. <i>Faraday Discussions</i> , 2017 , 201, 207-219	3.6	26
265	Heterogeneous catalytic hydrogenation of CO by metal oxides: defect engineering - perfecting imperfection. <i>Chemical Society Reviews</i> , 2017 , 46, 4631-4644	58.5	212
264	Perspective: Theory and simulation of hybrid halide perovskites. <i>Journal of Chemical Physics</i> , 2017 , 146, 220901	3.9	87
263	Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design. <i>Chemistry of Materials</i> , 2017 , 29, 3663-3670	9.6	6
262	Influence of Rb/Cs Cation-Exchange on Inorganic Sn Halide Perovskites: From Chemical Structure to Physical Properties. <i>Chemistry of Materials</i> , 2017 , 29, 3181-3188	9.6	61
261	Metastable cubic tin sulfide: A novel phonon-stable chiral semiconductor. <i>APL Materials</i> , 2017 , 5, 03610) 1 5.7	36
260	Theory of ionization potentials of nonmetallic solids. <i>Physical Review B</i> , 2017 , 95,	3.3	15
259	Indirect to direct bandgap transition in methylammonium lead halide perovskite. <i>Energy and Environmental Science</i> , 2017 , 10, 509-515	35.4	237

258	Quantifying Thermal Disorder in Metal-Organic Frameworks: Lattice Dynamics and Molecular Dynamics Simulations of Hybrid Formate Perovskites. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 421-4	29 ^{3.8}	12
257	H-Center and V-Center Defects in Hybrid Halide Perovskites. <i>ACS Energy Letters</i> , 2017 , 2, 2713-2714	20.1	39
256	Revisiting the Incorporation of Ti(IV) in UiO-type Metal®rganic Frameworks: Metal Exchange versus Grafting and Their Implications on Photocatalysis. <i>Chemistry of Materials</i> , 2017 , 29, 8963-8967	9.6	52
255	Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 2647-2652	20.1	94
254	MOFs modeling and theory: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 233-245	3.6	3
253	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 87-99	3.6	5
252	New directions in gas sorption and separation with MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 175-194	3.6	6
251	Catalysis in MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 369-394	3.6	12
250	Anharmonic Origin of Giant Thermal Displacements in the Metal Organic Framework UiO-67. Journal of Physical Chemistry C, 2017 , 121, 22010-22014	3.8	3
249	Spontaneous Octahedral Tilting in the Cubic Inorganic Cesium Halide Perovskites CsSnX and CsPbX (X = F, Cl, Br, I). <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4720-4726	6.4	126
248	Temperature-Induced Large Broadening and Blue Shift in the Electronic Band Structure and Optical Absorption of Methylammonium Lead Iodide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3720-3725	6.4	22
247	Electronic structure design for nanoporous, electrically conductive zeolitic imidazolate frameworks. Journal of Materials Chemistry C, 2017 , 5, 7726-7731	7.1	28
246	Candidate photoferroic absorber materials for thin-film solar cells from naturally occurring minerals: enargite, stephanite, and bournonite. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 1339-1350	5.8	23
245	How Strong Is the Hydrogen Bond in Hybrid Perovskites?. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 6154-6159	6.4	110
244	A rapidly-reversible absorptive and emissive vapochromic Pt(II) pincer-based chemical sensor. <i>Nature Communications</i> , 2017 , 8, 1800	17.4	56
243	Halide Perovskite Heteroepitaxy: Bond Formation and Carrier Confinement at the PbS I sPbBr3 Interface. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27351-27356	3.8	32
242	Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH3NH3PbBr3 using terahertz time-domain spectroscopy. <i>Applied Physics Letters</i> , 2017 , 111, 201903	3.4	38
241	Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10863-10867	16.4	209

240	Instilling defect tolerance in new compounds. Nature Materials, 2017,	27	156
239	Experimental and theoretical optical properties of methylammonium lead halide perovskites. <i>Nanoscale</i> , 2016 , 8, 6317-27	7.7	287
238	Correction: A universal chemical potential for sulfur vapours. Chemical Science, 2016, 7, 6574	9.4	3
237	Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions. <i>Physical Review Letters</i> , 2016 , 117, 075502	7.4	104
236	Chemical principles for electroactive metal@rganic frameworks. MRS Bulletin, 2016, 41, 870-876	3.2	34
235	Computational Screening of All Stoichiometric Inorganic Materials. <i>CheM</i> , 2016 , 1, 617-627	16.2	72
234	Organised chaos: entropy in hybrid inorganic-organic systems and other materials. <i>Chemical Science</i> , 2016 , 7, 6316-6324	9.4	49
233	Electronic Structure and Defect Physics of Tin Sulfides: SnS, Sn2S3, and SnS2. <i>Physical Review Applied</i> , 2016 , 6,	4.3	111
232	Analysis of electrostatic stability and ordering in quaternary perovskite solid solutions. <i>Physical Review B</i> , 2016 , 93,	3.3	8
231	Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?. <i>ACS Energy Letters</i> , 2016 , 1, 949-955	20.1	301
230	Microscopic origin of entropy-driven polymorphism in hybrid organic-inorganic perovskite materials. <i>Physical Review B</i> , 2016 , 94,	3.3	39
229	Realistic Surface Descriptions of Heterometallic Interfaces: The Case of TiWC Coated in Noble Metals. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4475-4482	6.4	17
228	Electronic origins of photocatalytic activity in d0 metal organic frameworks. <i>Scientific Reports</i> , 2016 , 6, 23676	4.9	154
227	Ultrafast carrier dynamics in BiVO4 thin film photoanode material: interplay between free carriers, trapped carriers and low-frequency lattice vibrations. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18516-1	18523	45
226	One-dimensional Magnus-type platinum double salts. <i>Nature Communications</i> , 2016 , 7, 11950	17.4	27
225	A general forcefield for accurate phonon properties of metal-organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 29316-29329	3.6	26
224	Frontier Orbital Engineering of Metal-Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides. <i>Inorganic Chemistry</i> , 2016 , 55, 7265-9	5.1	11
223	Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p-Type Conduction Pathways. <i>Chemistry of Materials</i> , 2016 , 28, 4706-4713	9.6	26

222	Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 27051-27066	3.6	243
221	Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2060-2068	13	97
220	Compositional control of pore geometry in multivariate metal-organic frameworks: an experimental and computational study. <i>Dalton Transactions</i> , 2016 , 45, 4316-26	4.3	14
219	Role of Amine¶avity Interactions in Determining the Structure and Mechanical Properties of the Ferroelectric Hybrid Perovskite [NH3NH2]Zn(HCOO)3. <i>Chemistry of Materials</i> , 2016 , 28, 312-317	9.6	52
218	Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A, 2016 , 4, 1312-1318	13	190
217	Computational materials design of crystalline solids. <i>Chemical Society Reviews</i> , 2016 , 45, 6138-6146	58.5	72
216	A Simple and Non-Destructive Method for Assessing the Incorporation of Bipyridine Dicarboxylates as Linkers within Metal-Organic Frameworks. <i>Chemistry - A European Journal</i> , 2016 , 22, 3713-8	4.8	26
215	What Is Moving in Hybrid Halide Perovskite Solar Cells?. <i>Accounts of Chemical Research</i> , 2016 , 49, 528-3.	524.3	319
214	Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. <i>Chemistry of Materials</i> , 2016 , 28, 1980-1984	9.6	225
213	Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1-xBrx)3 Hybrid Halide Perovskite Alloy. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 1083-7	6.4	217
212	Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. <i>Chemical Science</i> , 2016 , 7, 4832-4841	9.4	197
211	A universal chemical potential for sulfur vapours. <i>Chemical Science</i> , 2016 , 7, 1082-1092	9.4	34
210	Screening procedure for structurally and electronically matched contact layers for high-performance solar cells: hybrid perovskites. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 1149-1158	7.1	38
209	Resonant Raman scattering of ZnSxSe1-x solid solutions: the role of S and Se electronic states. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 7632-40	3.6	28
208	Observation of a re-entrant phase transition in the molecular complex tris(EB,5-diiso-propyl-1,2,4-triazolato-E)trigold(I) under high pressure. <i>IUCrJ</i> , 2016 , 3, 367-376	4.7	5
207	Is the Cu/Zn Disorder the Main Culprit for the Voltage Deficit in Kesterite Solar Cells?. <i>Advanced Energy Materials</i> , 2016 , 6, 1502276	21.8	221
206	Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory. <i>Physical Review B</i> , 2016 , 94,	3.3	101
205	Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells. <i>Applied Physics Letters</i> , 2016 , 108, 112103	3.4	43

(2015-2016)

204	Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. <i>APL Materials</i> , 2016 , 4, 091501	5.7	153
203	Magnetic coupling in a hybrid Mn(ii) acetylene dicarboxylate. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 33329-33334	3.6	3
202	Suppression of lattice thermal conductivity by mass-conserving cation mutation in multi-component semiconductors. <i>APL Materials</i> , 2016 , 4, 104809	5.7	8
201	Free Energy of Ligand Removal in the Metal-Organic Framework UiO-66. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 9276-9281	3.8	34
200	Polymorphism of the azobenzene dye compound methyl yellow. <i>CrystEngComm</i> , 2016 , 18, 3456-3461	3.3	7
199	Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory. <i>Chemistry of Materials</i> , 2016 , 28, 3718-3726	9.6	123
198	Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite. <i>ACS Energy Letters</i> , 2016 , 1, 880-887	20.1	177
197	Molecular Motion and Dynamic Crystal Structures of Hybrid Halide Perovskites 2016 , 1-17		6
196	Cubic Perovskite Structure of Black Formamidinium Lead Iodide, <code>[HC(NH2)2]PbI3</code> , at 298 K. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3209-3212	6.4	343
195	Ionic transport in hybrid lead iodide perovskite solar cells. <i>Nature Communications</i> , 2015 , 6, 7497	17.4	1649
194	Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et4dien)(🛚2-O,ON)(🗈1-NO2)]. <i>CrystEngComm</i> , 2015 , 17, 383-394	3.3	12
194		3·3 5.8	12 51
	[Ni(Et4dien)(@-O,ON)(@-NO2)]. CrystEngComm, 2015, 17, 383-394 Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical		
193	[Ni(Et4dien)(@-O,ON)(fi-NO2)]. CrystEngComm, 2015, 17, 383-394 Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical Communications, 2015, 51, 8935-8 Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O).	5.8	51
193 192	[Ni(Et4dien)(@-O,ON)(@-NO2)]. CrystEngComm, 2015, 17, 383-394 Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical Communications, 2015, 51, 8935-8 Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). Journal of the American Chemical Society, 2015, 137, 6164-7 Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are	5.8	51
193 192 191	[Ni(Et4dien)(@-O,ON)(II-NO2)]. CrystEngComm, 2015, 17, 383-394 Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical Communications, 2015, 51, 8935-8 Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). Journal of the American Chemical Society, 2015, 137, 6164-7 Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination. Chemistry of Materials, 2015, 27, 3844-3851	5.8 16.4 9.6	51 222 92
193 192 191 190	[Ni(Et4dien)(Q-O,ON)(II-NO2)]. CrystEngComm, 2015, 17, 383-394 Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chemical Communications, 2015, 51, 8935-8 Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). Journal of the American Chemical Society, 2015, 137, 6164-7 Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination. Chemistry of Materials, 2015, 27, 3844-3851 Inorganic materials: The quest for new functionality. Nature Chemistry, 2015, 7, 274-5	5.8 16.4 9.6 17.6	51 222 92 39

186	Magnetoelastic coupling in the cobalt adipate metalBrganic framework from quasi-harmonic lattice dynamics. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11076-11080	7.1	9
185	Lattice-mismatched heteroepitaxy of IV-VI thin films on PbTe(001): An ab initio study. <i>Physical Review B</i> , 2015 , 91,	3.3	6
184	Solid-state chemistry of glassy antimony oxides. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 11349-11356	7.1	8
183	Role of entropic effects in controlling the polymorphism in formate ABX3 metal-organic frameworks. <i>Chemical Communications</i> , 2015 , 51, 15538-41	5.8	59
182	Role of Microstructure in the Electron-Hole Interaction of Hybrid Lead-Halide Perovskites. <i>Nature Photonics</i> , 2015 , 9, 695-701	33.9	203
181	Electronic excitations in molecular solids: bridging theory and experiment. <i>Faraday Discussions</i> , 2015 , 177, 181-202	3.6	10
180	Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3663-9	6.4	281
179	Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 5009-14	6.4	41
178	Ferroelectric materials for solar energy conversion: photoferroics revisited. <i>Energy and Environmental Science</i> , 2015 , 8, 838-848	35.4	260
177	Self-regulation mechanism for charged point defects in hybrid halide perovskites. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1791-4	16.4	394
176	Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. <i>Materials Horizons</i> , 2015 , 2, 228-231	14.4	198
175	Assessment of polyanion (BF4[and PF6]Isubstitutions in hybrid halide perovskites. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9067-9070	13	83
174	Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. <i>Angewandte Chemie</i> , 2015 , 127, 9125-9128	3.6	18
173	Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8997-9000	16.4	43
172	Phase stability and transformations in the halide perovskite CsSnI3. <i>Physical Review B</i> , 2015 , 91,	3.3	101
171	Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. <i>Physical Review B</i> , 2015 , 92,	3.3	360
170	Buckeridge et⊡al. Reply. <i>Physical Review Letters</i> , 2015 , 115, 029702	7.4	5
169	Crystal structure optimisation using an auxiliary equation of state. <i>Journal of Chemical Physics</i> , 2015 , 143, 184101	3.9	15

168	A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide. Journal of Applied Physics, 2015, 118, 105702	2.5	5
167	Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. <i>Journal of Chemical Physics</i> , 2015 , 143, 064710	3.9	60
166	Band energy control of molybdenum oxide by surface hydration. <i>Applied Physics Letters</i> , 2015 , 107, 231	69.5	23
165	Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu- and Ag-Based Kesterite Compounds. <i>Advanced Functional Materials</i> , 2015 , 25, 6733-6743	15.6	218
164	The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. <i>Nature Communications</i> , 2015 , 6, 7124	17.4	446
163	Variation in Surface Ionization Potentials of Pristine and Hydrated BiVO4. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2379-83	6.4	30
162	Polymorph engineering of CuMO2 (M = Al, Ga, Sc, Y) semiconductors for solar energy applications: from delafossite to wurtzite. <i>Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials</i> , 2015 , 71, 702-6	1.8	9
161	Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic-Inorganic Halide Perovskites. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 5755-5760	3.8	226
160	Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites. <i>Angewandte Chemie</i> , 2015 , 127, 1811-1814	3.6	87
159	Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1774-7	16.4	282
158	Nanocrystals of Cesium Lead Halide Perovskites (CsPbXIIX = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. <i>Nano Letters</i> , 2015 , 15, 3692-6	11.5	4888
157	Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. <i>ChemSusChem</i> , 2015 , 8, 603-8	8.3	149
156	Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals. <i>Physical Review Letters</i> , 2015 , 114, 016405	7.4	58
155	Electronic chemical potentials of porous metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2703-6	16.4	221
154	Crystal electron binding energy and surface work function control of tin dioxide. <i>Physical Review B</i> , 2014 , 89,	3.3	42
153	Atomistic origins of high-performance in hybrid halide perovskite solar cells. <i>Nano Letters</i> , 2014 , 14, 25	84-199	1756
152	N incorporation and associated localized vibrational modes in GaSb. <i>Physical Review B</i> , 2014 , 89,	3.3	12
151	Prediction of electron energies in metal oxides. <i>Accounts of Chemical Research</i> , 2014 , 47, 364-72	24.3	94

150	Tunable trimers: using temperature and pressure to control luminescent emission in gold(I) pyrazolate-based trimers. <i>Chemistry - A European Journal</i> , 2014 , 20, 16933-42	4.8	23
149	Three-electron two-centred bonds and the stabilisation of cationic sulfur radicals. <i>Chemical Science</i> , 2014 , 5, 1390-1395	9.4	30
148	Ligand design for long-range magnetic order in metal-organic frameworks. <i>Chemical Communications</i> , 2014 , 50, 13990-3	5.8	44
147	Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6198-6208	13	24
146	Electronic structure and band alignment of zinc nitride, Zn3N2. RSC Advances, 2014, 4, 3306-3311	3.7	37
145	Computational screening of structural and compositional factors for electrically conductive coordination polymers. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14463-72	3.6	23
144	Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. <i>APL Materials</i> , 2014 , 2, 081506	5.7	443
143	Ab initio thermodynamic model of Cu2ZnSnS4. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7829-7836	13	36
142	Transferable Force Field for Metal-Organic Frameworks from First-Principles: BTW-FF. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 4644-4652	6.4	69
141	From kesterite to stannite photovoltaics: Stability and band gaps of the Cu2(Zn,Fe)SnS4 alloy. <i>Applied Physics Letters</i> , 2014 , 104, 021912	3.4	59
140	Design of I2IIIVI/14 Semiconductors through Element Substitution: The Thermodynamic Stability Limit and Chemical Trend. <i>Chemistry of Materials</i> , 2014 , 26, 3411-3417	9.6	109
139	Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. <i>Physical Review B</i> , 2014 , 89,	3.3	514
138	Ultra-thin oxide films for band engineering: design principles and numerical experiments. <i>Thin Solid Films</i> , 2014 , 559, 64-68	2.2	12
137	Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. <i>Physical Review B</i> , 2014 , 89,	3.3	172
136	Stacking-dependent energetics and electronic structure of ultrathin polymorphic V2VI3 topological insulator nanofilms. <i>Physical Review B</i> , 2014 , 90,	3.3	8
135	Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal &nS. <i>Journal of Applied Physics</i> , 2014 , 116, 013511	2.5	53
134	Identification of critical stacking faults in thin-film CdTe solar cells. <i>Applied Physics Letters</i> , 2014 , 105, 062104	3.4	36
133	Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen. <i>Applied Physics Letters</i> , 2014 , 104, 232108	3.4	61

(2013-2014)

132	Electronic structure modulation of metal-organic frameworks for hybrid devices. <i>ACS Applied Materials & ACS Applied Materials & ACS Applied</i>	9.5	67
131	Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds. <i>Computer Physics Communications</i> , 2014 , 185, 330-338	4.2	58
130	Electronic Structures of Antimony Oxides. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14759-14769	3.8	62
129	Limits to Doping of Wide Band Gap Semiconductors. <i>Chemistry of Materials</i> , 2013 , 25, 2924-2926	9.6	45
128	Band alignment of rutile and anatase TiO[]Nature Materials, 2013, 12, 798-801	27	1656
127	Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10942-5	16.4	535
126	Helical frontier orbitals of conjugated linear molecules. Chemical Science, 2013, 4, 4278	9.4	53
125	Dynamical response and instability in ceria under lattice expansion. <i>Physical Review B</i> , 2013 , 87,	3.3	38
124	Prediction of (TiO2)x(Cu2O)y alloys for efficient photoelectrochemical water splitting. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 1778-81	3.6	17
123	Energy Storage: Rechargeable Lithium Batteries 2013 , 109-129		
122	Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. <i>APL Materials</i> , 2013 , 1, 042111	5.7	462
121	Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2. <i>Chemistry of Materials</i> , 2013 , 25, 4908-4916	9.6	321
120	Band alignment in SnS thin-film solar cells: Possible origin of the low conversion efficiency. <i>Applied Physics Letters</i> , 2013 , 102, 132111	3.4	119
119	Computational Techniques 2013 , 1-28		3
118	Energy Generation: Solar Energy 2013 , 29-69		1
117	Electronic origin of the conductivity imbalance between covalent and ionic amorphous semiconductors. <i>Physical Review B</i> , 2013 , 87,	3.3	33
116	Thermodynamic and electronic properties of tunable IIIVI and IVIVI semiconductor based metalBrganic frameworks from computational chemistry. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 95-	10 ¹	23
115	Microscopic origin of the optical processes in blue sapphire. <i>Chemical Communications</i> , 2013 , 49, 5259-6	65 .8	18

114	Electron excess in alkaline earth sub-nitrides: 2D electron gas or 3D electride?. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3525	7.1	58
113	Dielectric response of Fe2O3 crystals and thin films. <i>Chemical Physics Letters</i> , 2013 , 586, 67-69	2.5	35
112	Polymorphism of indium oxide: Materials physics of orthorhombic In2O3. <i>Physical Review B</i> , 2013 , 88,	3.3	17
111	Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. <i>Advanced Materials</i> , 2013 , 25, 1522-39	24	979
110	PbO2: from semi-metal to transparent conducting oxide by defect chemistry control. <i>Chemical Communications</i> , 2013 , 49, 448-50	5.8	23
109	Energy Storage: Hydrogen 2013 , 131-148		
108	Toward the Nanoscale 2013 , 261-294		
107	One-dimensional embedded cluster approach to modeling CdS nanowires. <i>Journal of Chemical Physics</i> , 2013 , 139, 124101	3.9	6
106	Oxidation of GaN: An ab initio thermodynamic approach. <i>Physical Review B</i> , 2013 , 88,	3.3	23
105	There and back again: polytypism and high-pressure re-entrant behaviour in a gold(I) trimer. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2013 , 69, s201-s201		2
104	Introducing k-point parallelism into VASP. Computer Physics Communications, 2012, 183, 1696-1701	4.2	18
104	Introducing k-point parallelism into VASP. <i>Computer Physics Communications</i> , 2012 , 183, 1696-1701 Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24262-24267	4.2 3.8	18
,	Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical</i>	·	
103	Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24262-24267 A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure	3.8	172
103	Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24262-24267 A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry. <i>Journal of Solid State Chemistry</i> , 2012 , 196, 157-160 Synthesis, characterization, and calculated electronic structure of the crystalline metal-organic	3.8	172 20
103	Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24262-24267 A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry. <i>Journal of Solid State Chemistry</i> , 2012 , 196, 157-160 Synthesis, characterization, and calculated electronic structure of the crystalline metal-organic polymers [Hg(SC6H4S)(en)]n and [Pb(SC6H4S)(dien)]n. <i>Inorganic Chemistry</i> , 2012 , 51, 370-6 Surface structure of In2O3(111) (111) determined by density functional theory calculations and low	3.8 3.3 5.1	172 20 21
103 102 101	Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24262-24267 A photoactive titanate with a stereochemically active Sn lone pair: Electronic and crystal structure of Sn2TiO4 from computational chemistry. <i>Journal of Solid State Chemistry</i> , 2012 , 196, 157-160 Synthesis, characterization, and calculated electronic structure of the crystalline metal-organic polymers [Hg(SC6H4S)(en)]n and [Pb(SC6H4S)(dien)]n. <i>Inorganic Chemistry</i> , 2012 , 51, 370-6 Surface structure of In2O3(111) (11) determined by density functional theory calculations and low energy electron diffraction. <i>Surface Science</i> , 2012 , 606, 1-6 Conductive metal-organic frameworks and networks: fact or fantasy?. <i>Physical Chemistry Chemical</i>	3.8 3.3 5.1 1.8	172 20 21 20

(2011-2012)

96	Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 7229-33	3.6	123
95	Prediction on the existence and chemical stability of cuprous fluoride. <i>Chemical Science</i> , 2012 , 3, 2565	9.4	21
94	Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. <i>Advanced Energy Materials</i> , 2012 , 2, 400-409	21.8	488
93	Electronic structure of CuCrO2 thin films grown on Al2O3(001) by oxygen plasma assisted molecular beam epitaxy. <i>Journal of Applied Physics</i> , 2012 , 112, 113718	2.5	40
92	Bandgap engineering of ZnSnP2 for high-efficiency solar cells. <i>Applied Physics Letters</i> , 2012 , 100, 25191	13.4	99
91	Multi-component transparent conducting oxides: progress in materials modelling. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 334210	1.8	39
90	Electron and hole stability in GaN and ZnO. Journal of Physics Condensed Matter, 2011, 23, 334217	1.8	11
89	Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. <i>Chemical Society Reviews</i> , 2011 , 40, 4455-63	58.5	456
88	Microscopic origins of electron and hole stability in ZnO. Chemical Communications, 2011, 47, 3386-8	5.8	50
87	Crystal structure and defect reactions in the kesterite solar cell absorber Cu2ZnSnS4 (CZTS): Theoretical insights 2011 ,		17
86	Band structure engineering of multinary chalcogenide topological insulators. <i>Physical Review B</i> , 2011 , 83,	3.3	51
85	Compositional dependence of structural and electronic properties of Cu2ZnSn(S,Se)4 alloys for thin film solar cells. <i>Physical Review B</i> , 2011 , 83,	3.3	350
84	Surface oxygen vacancy origin of electron accumulation in indium oxide. <i>Applied Physics Letters</i> , 2011 , 98, 261910	3.4	75
83	Thickness dependence of the strain, band gap and transport properties of epitaxial In2O3 thin films grown on Y-stabilised ZrO2(111). <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 334211	1.8	38
82	Effects of reduced dimensionality on the electronic structure and defect chemistry of semiconducting hybrid organic[horganic PbS solids. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,</i> 2011 , 467, 1970-1985	2.4	21
81	Control of the band-gap states of metal oxides by the application of epitaxial strain: The case of indium oxide. <i>Physical Review B</i> , 2011 , 83,	3.3	40
80	Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment. <i>Physical Review Letters</i> , 2011 , 107, 246402	7.4	76
79	The nature of electron lone pairs in BiVO4. <i>Applied Physics Letters</i> , 2011 , 98, 212110	3.4	81

78	Potential energy landscapes for anion Frenkel-pair formation in ceria and india. <i>Solid State Ionics</i> , 2011 , 184, 52-56	3.3	22
77	Strontium migration assisted by oxygen vacancies in SrTiO3 from classical and quantum mechanical simulations. <i>Physical Review B</i> , 2011 , 83,	3.3	60
76	Free energy of defect formation: Thermodynamics of anion Frenkel pairs in indium oxide. <i>Physical Review B</i> , 2011 , 83,	3.3	21
75	Structural diversity and electronic properties of Cu2SnX3 (X=S, Se): A first-principles investigation. <i>Physical Review B</i> , 2011 , 84,	3.3	152
74	Determination of the Poisson ratio of (001) and (111) oriented thin films of In2O3 by synchrotron-based x-ray diffraction. <i>Physical Review B</i> , 2011 , 84,	3.3	17
73	Structural, Electronic and Defect Properties of Cu2ZnSn(S,Se)4 Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1370, 55		5
72	Electronic, structural, and magnetic effects of 3d transition metals in hematite. <i>Journal of Applied Physics</i> , 2010 , 107, 123712	2.5	111
71	On the problem of cluster structure diversity and the value of data mining. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 8438-45	3.6	25
70	Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. <i>Physical Review B</i> , 2010 , 81,	3.3	532
69	Electrodeposited Aluminum-Doped Fe2O3 Photoelectrodes: Experiment and Theory. <i>Chemistry of Materials</i> , 2010 , 22, 510-517	9.6	207
68	Defect Processes in a PbS Metal Organic Framework: A Quantum-Confined Hybrid Semiconductor. Journal of Physical Chemistry Letters, 2010 , 1, 1284-1287	6.4	34
67	Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia. <i>Nano Letters</i> , 2010 , 10, 3740-6	11.5	90
66	Experimental and density-functional study of the electronic structure of In4Sn3O12. <i>Physical Review B</i> , 2010 , 81,	3.3	11
65	Electronic structure of In2O3 and Sn-doped In2O3 by hard x-ray photoemission spectroscopy. <i>Physical Review B</i> , 2010 , 81,	3.3	94
64	Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. <i>Applied Physics Letters</i> , 2010 , 96, 021902	3.4	405
63	Advances in computational studies of energy materials. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2010 , 368, 3379-456	3	110
62	Origin of antiferromagnetism in CoO: A density functional theory study. <i>Applied Physics Letters</i> , 2010 , 96, 162508	3.4	45
61	Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10438		150

(2009-2010)

60	Evolutionary structure prediction and electronic properties of indium oxide nanoclusters. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 8446-53	3.6	33
59	Delafossite-alloy photoelectrodes for PEC hydrogen production: a density functional theory study 2010 ,		3
58	Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. <i>Physical Review B</i> , 2010 , 82,	3.3	220
57	Oxygen interstitial structures in close-packed metal oxides. <i>Chemical Physics Letters</i> , 2010 , 492, 44-48	2.5	43
56	Photostimulated reduction processes in a titania hybrid metal-organic framework. <i>ChemPhysChem</i> , 2010 , 11, 2341-4	3.2	41
55	Walsh, Da Silva, and Wei Reply:. <i>Physical Review Letters</i> , 2009 , 102,	7.4	7
54	Group-IIIA versus IIIB delafossites: Electronic structure study. <i>Physical Review B</i> , 2009 , 80,	3.3	60
53	Atomistic origins of the phase transition mechanism in Ge2Sb2Te5. <i>Journal of Applied Physics</i> , 2009 , 106, 113509	2.5	28
52	Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys. <i>Applied Physics Letters</i> , 2009 , 94, 251907	3.4	19
51	Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. <i>Applied Physics Letters</i> , 2009 , 94, 212109	3.4	162
50	Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. <i>Physical Review B</i> , 2009 , 79,	3.3	359
49	Interplay between Order and Disorder in the High Performance of Amorphous Transparent Conducting Oxides. <i>Chemistry of Materials</i> , 2009 , 21, 5119-5124	9.6	80
48	Electronic structure and phase stability of MgTe, ZnTe, CdTe, and their alloys in the B3, B4, and B8 structures. <i>Physical Review B</i> , 2009 , 79,	3.3	50
47	Origin of electronic and optical trends in ternary In2O3(ZnO)n transparent conducting oxides (n=1,3,5): Hybrid density functional theory calculations. <i>Physical Review B</i> , 2009 , 79,	3.3	73
46	Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights. <i>Applied Physics Letters</i> , 2009 , 94, 041903	3.4	526
45	Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. <i>Chemistry of Materials</i> , 2009 , 21, 547-551	9.6	542
44	Energetic and Electronic Structure Analysis of Intrinsic Defects in SnO2. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 439-448	3.8	236
43	Acceptor levels in p-type Cu(2)O: rationalizing theory and experiment. <i>Physical Review Letters</i> , 2009 , 103, 096405	7.4	237

42	Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis. <i>Chemistry of Materials</i> , 2009 , 21, 4568-4576	9.6	89
41	Ternary cobalt spinel oxides for solar driven hydrogen production: Theory and experiment. <i>Energy and Environmental Science</i> , 2009 , 2, 774	35.4	55
40	Physical Properties, Intrinsic Defects, and Phase Stability of Indium Sesquioxide. <i>Chemistry of Materials</i> , 2009 , 21, 4962-4969	9.6	59
39	X-ray spectroscopic study of the electronic structure of CuCrO2. <i>Physical Review B</i> , 2009 , 79,	3.3	82
38	Effect of Cr substitution on the electronic structure of CuAl1\(\mathbb{U}\)CrxO2. Physical Review B, 2009 , 79,	3.3	102
37	Theoretical investigation of atomic and electronic structures of Ga2O3(ZnO)6. <i>Physical Review B</i> , 2009 , 80,	3.3	26
36	Design of quaternary chalcogenide photovoltaic absorbers through cation mutation 2009,		6
35	Quaternary semiconductors with positive crystal field splitting: Potential high-efficiency spin-polarized electron sources. <i>Applied Physics Letters</i> , 2009 , 95, 052102	3.4	12
34	Competing Defect Mechanisms and Hydrogen Adsorption on Li-Doped MgO Low Index Surfaces: A DFT+U Study. <i>E-Journal of Surface Science and Nanotechnology</i> , 2009 , 7, 395-404	0.7	9
33	An ab initio Study of Reduction of V2O5 through the Formation of Oxygen Vacancies and Li Intercalation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9903-9911	3.8	181
32	Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. <i>Physical Review B</i> , 2008 , 77,	3.3	167
31	Electronic, Energetic, and Chemical Effects of Intrinsic Defects and Fe-Doping of CoAl2O4: A DFT+U Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12044-12050	3.8	66
30	Origins of band-gap renormalization in degenerately doped semiconductors. <i>Physical Review B</i> , 2008 , 78,	3.3	235
29	Theoretical description of carrier mediated magnetism in cobalt doped ZnO. <i>Physical Review Letters</i> , 2008 , 100, 256401	7.4	240
28	Nature of the band gap of In2O3 revealed by first-principles calculations and x-ray spectroscopy. <i>Physical Review Letters</i> , 2008 , 100, 167402	7.4	498
27	A comparative study of the electronic structures of SrCu2O2 and PbCu2O2 by density functional theory, high resolution X-ray photoemission and electron paramagnetic resonance spectroscopy. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2798		21
26	Insights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compounds. <i>Physical Review B</i> , 2008 , 78,	3.3	147
25	Filling the green gap: A first-principles study of the LiMg1-xZnxN alloy. <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2008 , 5, 2326-2328		1

24	Polymorphism in Bismuth Stannate: A First-Principles Study. Chemistry of Materials, 2007, 19, 5158-516	54 9.6	40
23	Experimental and theoretical study of the electronic structures of PbO and PbO2. <i>Journal of Materials Chemistry</i> , 2007 , 17, 267-277		92
22	Surface Sensitivity in Lithium-Doping of MgO: A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 7971-7979	3.8	91
21	Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	134
20	Nature of electronic states at the Fermi level of metallic P bO2 revealed by hard x-ray photoemission spectroscopy. <i>Physical Review B</i> , 2007 , 75,	3.3	36
19	Theoretical study of stability and electronic structure of Li(Mg,Zn)N alloys: A candidate for solid state lighting. <i>Physical Review B</i> , 2007 , 76,	3.3	18
18	Exciton-mediated one-phonon resonant Raman scattering from one-dimensional systems. <i>Physical Review B</i> , 2006 , 74,	3.3	15
17	Electronic structure of the <code>and</code> phases of Bi2O3: A combined ab initio and x-ray spectroscopy study. <i>Physical Review B</i> , 2006 , 73,	3.3	168
16	Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. <i>Physical Review Letters</i> , 2006 , 96, 157403	7.4	182
15	A theoretical and experimental study of the distorted pyrochlore Bi2Sn2O7. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3452		27
14	Influence of the anion on lone pair formation in Sn(II) monochalcogenides: a DFT study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 18868-75	3.4	149
13	The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 1422-1428	3.3	207
12	Experimental and theoretical study of the electronic structure of HgO and Tl2O3. <i>Physical Review B</i> , 2005 , 71,	3.3	48
11	Why is lead dioxide metallic?. Chemical Physics Letters, 2005, 411, 181-185	2.5	59
10	Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. <i>Physical Review B</i> , 2004 , 70,	3.3	105
9	On the involvement of the shallow core 5d level in the bonding in HgO. <i>Chemical Physics Letters</i> , 2004 , 399, 98-101	2.5	25
8	Pushing the boundaries of lithium battery research with atomistic modelling on dillrent scales. <i>Progress in Energy</i> ,	7.7	2
7	From Atoms to Cells: Multiscale Modeling of LiNixMnyCozO2 Cathodes for Li-Ion Batteries. <i>ACS Energy Letters</i> ,108-122	20.1	4

6	Anharmonic lattice dynamics of superionic lithium nitride. <i>Journal of Materials Chemistry A</i> ,	13	1
5	Energy Conversion: Heterogeneous Catalysis187-229		1
4	Energy Generation: Nuclear Energy71-107		
3	Energy Conversion: Solid Oxide Fuel Cells: First-Principles Modeling of Elementary Processes149-186		4
2	Energy Conversion: Solid-State Lighting231-259		2
1	Electronic defects in metal oxide photocatalysts. <i>Nature Reviews Materials</i> ,	72.2	10