List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alterations of the Sympathoadrenal Axis Related to the Development of Alzheimer's Disease in the 3xTg Mouse Model. Biology, 2022, 11, 511.	2.8	0
2	Novel Purine Derivative ITH15004 Facilitates Exocytosis through a Mitochondrial Calcium-Mediated Mechanism. International Journal of Molecular Sciences, 2022, 23, 440.	4.1	0
3	<i>In vitro</i> and <i>in silico</i> studies for barbinervic acid, a triterpene isolated from <i>Eugenia punicifolia</i> that inhibits vasopressor tone. Natural Product Research, 2021, 35, 4870-4875.	1.8	0
4	Serum Amyloid A1/Toll-Like Receptor-4 Axis, an Important Link between Inflammation and Outcome of TBI Patients. Biomedicines, 2021, 9, 599.	3.2	5
5	The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Medicinal Research Reviews, 2020, 40, 2427-2465.	10.5	44
6	Melatonin Reduces NLRP3 Inflammasome Activation by Increasing α7 nAChR-Mediated Autophagic Flux. Antioxidants, 2020, 9, 1299.	5.1	26
7	Otilonium and pinaverium trigger mitochondrial-mediated apoptosis in rat embryo cortical neurons in vitro. NeuroToxicology, 2019, 70, 99-111.	3.0	5
8	Old and emerging concepts on adrenal chromaffin cell stimulus-secretion coupling. Pflugers Archiv European Journal of Physiology, 2018, 470, 1-6.	2.8	4
9	Hydrogen sulphide facilitates exocytosis by regulating the handling of intracellular calcium by chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 1255-1270.	2.8	11
10	L-type calcium channels in exocytosis and endocytosis of chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 53-60.	2.8	4
11	Altered excitability and exocytosis in chromaffin cells from the R6/1 mouse model of Huntington's disease is linked to overâ€expression of mutated huntingtin. Journal of Neurochemistry, 2018, 147, 454-476.	3.9	8
12	Distinct patterns of exocytosis elicited by Ca2+, Sr2+ and Ba2+ in bovine chromaffin cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 1459-1471.	2.8	5
13	Dual Antidepressant Duloxetine Blocks Nicotinic Receptor Currents, Calcium Signals and Exocytosis in Chromaffin Cells Stimulated with Acetylcholine. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 28-39.	2.5	5
14	Design and synthesis of multipotent 3-aminomethylindoles and 7-azaindoles with enhanced protein phosphatase 2A-activating profile and neuroprotection. European Journal of Medicinal Chemistry, 2018, 157, 294-309.	5.5	12
15	Novel sulfoglycolipid IG20 causes neuroprotection by activating the phase II antioxidant response in rat hippocampal slices. Neuropharmacology, 2017, 116, 110-121.	4.1	1
16	The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na ⁺ /Ca ²⁺ exchanger. Journal of Physiology, 2017, 595, 2129-2146.	2.9	9
17	The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells. Frontiers in Cellular Neuroscience, 2017, 11, 135.	3.7	19
18	Regulation by L channels of Ca2+-evoked secretory responses in ouabain-treated chromaffin cells. Pflugers Archiv European Journal of Physiology, 2016, 468, 1779-1792.	2.8	4

#	Article	IF	CITATIONS
19	<i>N</i> -Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists. ACS Chemical Neuroscience, 2016, 7, 1157-1165.	3.5	7
20	Gramine Derivatives Targeting Ca ²⁺ Channels and Ser/Thr Phosphatases: A New Dual Strategy for the Treatment of Neurodegenerative Diseases. Journal of Medicinal Chemistry, 2016, 59, 6265-6280.	6.4	25
21	Novel synthetic sulfoglycolipid <scp>IG</scp> 20 facilitates exocytosis in chromaffin cells through the regulation of sodium channels. Journal of Neurochemistry, 2015, 135, 880-896.	3.9	2
22	Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1 ^{G93A} mouse model of amyotrophic lateral sclerosis. American Journal of Physiology - Cell Physiology, 2015, 308, C1-C19.	4.6	16
23	Nicotine Promotes Initiation and Progression of KRAS-Induced Pancreatic Cancer via Gata6-Dependent Dedifferentiation of Acinar Cells in Mice. Gastroenterology, 2014, 147, 1119-1133.e4.	1.3	89
24	Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice. Brain Research, 2014, 1573, 27-36.	2.2	9
25	Calcium Channels for Exocytosis and Endocytosis: Pharmacological Modulation. , 2014, , 1091-1138.		3
26	Calcium Channels for Exocytosis and Endocytosis. , 2014, , 1091-1138.		0
27	Lower density of L-type and higher density of P/Q-type of calcium channels in chromaffin cells of hypertensive, compared with normotensive rats. European Journal of Pharmacology, 2013, 706, 25-35.	3.5	7
28	Plasmalemmal sodium-calcium exchanger shapes the calcium and exocytotic signals of chromaffin cells at physiological temperature. American Journal of Physiology - Cell Physiology, 2013, 305, C160-C172.	4.6	9
29	Augmentation of catecholamine release elicited by an Eugenia punicifolia extract in chromaffin cells. Revista Brasileira De Farmacognosia, 2012, 22, 1-12.	1.4	4
30	Regulation by L-Type Calcium Channels of Endocytosis: An Overview. Journal of Molecular Neuroscience, 2012, 48, 360-367.	2.3	8
31	Paradoxical facilitation of exocytosis by inhibition of L-type calcium channels of bovine chromaffin cells. Biochemical and Biophysical Research Communications, 2011, 410, 307-311.	2.1	7
32	Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists. European Journal of Medicinal Chemistry, 2011, 46, 1-10.	5.5	46
33	Cholinergic and neuroprotective drugs for the treatment of Alzheimer and neuronal vascular diseases. II. Synthesis, biological assessment, and molecular modelling of new tacrine analogues from highly substituted 2-aminopyridine-3-carbonitriles. Bioorganic and Medicinal Chemistry, 2011, 19, 122-133.	3.0	44
34	Calcium entry through slow-inactivating L-type calcium channels preferentially triggers endocytosis rather than exocytosis in bovine chromaffin cells. American Journal of Physiology - Cell Physiology, 2011, 301, C86-C98.	4.6	16
35	Multipotent drugs with cholinergic and neuroprotective properties for the treatment of Alzheimer and neuronal vascular diseases. I. Synthesis, biological assessment, and molecular modeling of simple and readily available 2-aminopyridine-, and 2-chloropyridine-3,5-dicarbonitriles. Bioorganic and Medicinal Chemistry. 2010. 18. 5861-5872.	3.0	48
36	Permissive role of sphingosine on calcium-dependent endocytosis in chromaffin cells. Pflugers Archiv European Journal of Physiology, 2010, 460, 901-914.	2.8	12

#	Article	IF	CITATIONS
37	Computational analysis of the binding ability of heterocyclic and conformationally constrained epibatidine analogs in the neuronal nicotinic acetylcholine receptor. Molecular Diversity, 2010, 14, 201-211.	3.9	3
38	The effects of 3,4-methylenedioxymethamphetamine (MDMA) on nicotinic receptors: Intracellular calcium increase, calpain/caspase 3 activation, and functional upregulation. Toxicology and Applied Pharmacology, 2010, 244, 344-353.	2.8	32
39	Response to Letter to the Editor from Westerink and Hondebrink. Toxicology and Applied Pharmacology, 2010, 249, 249-250.	2.8	2
40	Greater cytosolic and mitochondrial calcium transients in adrenal medullary slices of hypertensive, compared with normotensive rats. European Journal of Pharmacology, 2010, 636, 126-136.	3.5	17
41	Role of the Endoplasmic Reticulum and Mitochondria on Quantal Catecholamine Release from Chromaffin Cells of Control and Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 231-240.	2.5	30
42	Preconditioning stimuli that augment chromaffin cell secretion. American Journal of Physiology - Cell Physiology, 2009, 296, C792-C800.	4.6	4
43	Inhibition of N and PQ calcium channels by calcium entry through L channels in chromaffin cells. Pflugers Archiv European Journal of Physiology, 2009, 458, 795-807.	2.8	11
44	Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis. Neuron, 2009, 62, 683-694.	8.1	136
45	Use of transgenic (knockout) mice reveals a site distinct from the α2A-adrenoceptors for agmatine in the vas deferens. Pharmacological Reports, 2009, 61, 325-329.	3.3	1
46	A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiologica, 2008, 192, 287-301.	3.8	97
47	Differential variations in Ca ²⁺ entry, cytosolic Ca ²⁺ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells. Acta Physiologica, 2008, 194, 97-109.	3.8	18
48	Allosteric modulation of α7 nicotinic receptors selectively depolarizes hippocampal interneurons, enhancing spontaneous GABAergic transmission. European Journal of Neuroscience, 2008, 27, 1097-1110.	2.6	63
49	A low nicotine concentration augments vesicle motion and exocytosis triggered by K+ depolarisation of chromaffin cells. European Journal of Pharmacology, 2008, 598, 81-86.	3.5	10
50	A two-step model for acetylcholine control of exocytosis via nicotinic receptors. Biochemical and Biophysical Research Communications, 2008, 365, 413-419.	2.1	15
51	Single-Vesicle Catecholamine Release Has Greater Quantal Content and Faster Kinetics in Chromaffin Cells from Hypertensive, as Compared with Normotensive, Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 685-693.	2.5	32
52	Neuroprotection afforded by nicotine against oxygen and glucose deprivation in hippocampal slices is lost in α7 nicotinic receptor knockout mice. Neuroscience, 2007, 145, 866-872.	2.3	75
53	L-type calcium channels are preferentially coupled to endocytosis in bovine chromaffin cells. Biochemical and Biophysical Research Communications, 2007, 357, 834-839.	2.1	33
54	Neuroprotectant minocycline depresses glutamatergic neurotransmission and Ca ²⁺ signalling in hippocampal neurons. European Journal of Neuroscience, 2007, 26, 2481-2495.	2.6	94

#	Article	IF	CITATIONS
55	A Comparison Between Acetylcholine-Like Action Potentials and Square Depolarizing Pulses in Triggering Calcium Entry and Exocytosis in Bovine Chromaffin Cells. Journal of Molecular Neuroscience, 2006, 30, 57-58.	2.3	3
56	Neuroprotection by Nicotine in Hippocampal Slices Subjected to Oxygen-Clucose Deprivation: Involvement of the α7 nAChR Subtype. Journal of Molecular Neuroscience, 2006, 30, 61-62.	2.3	23
57	Enhancement of Secretion by Threshold Nicotinic Stimulation in Bovine Chromaffin Cells. Journal of Molecular Neuroscience, 2006, 30, 81-82.	2.3	1
58	Blockade of nicotinic receptors of bovine adrenal chromaffin cells by nanomolar concentrations of atropine. European Journal of Pharmacology, 2006, 535, 13-24.	3.5	19
59	Activation and blockade by choline of bovine α7 and α3β4 nicotinic receptors expressed in oocytes. European Journal of Pharmacology, 2006, 535, 53-60.	3.5	9
60	Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiological Reviews, 2006, 86, 1093-1131.	28.8	309
61	A cholineâ€evoked [Ca 2+] C signal causes catecholamine release and hyperpolarization of chromaffin cells. FASEB Journal, 2004, 18, 1468-1470.	0.5	21
62	Antimigraine dotarizine blocks P/Q Ca2+ channels and exocytosis in a voltage-dependent manner in chromaffin cells. European Journal of Pharmacology, 2003, 481, 41-50.	3.5	3
63	A Single Neuronal Nicotinic Receptor α3α7β4* Is Present in the Bovine Chromaffin Cell. Annals of the New York Academy of Sciences, 2002, 971, 165-167.	3.8	10
64	Modulation of Exocytosis by the Na ⁺ /Ca ²⁺ Exchanger of Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 174-177.	3.8	2
65	Calcium-Dependent Inhibition of L, N, and P/Q Ca2+Channels in Chromaffin Cells: Role of Mitochondria. Journal of Neuroscience, 2001, 21, 2553-2560.	3.6	74
66	Blockade by agmatine of catecholamine release from chromaffin cells is unrelated to imidazoline receptors. European Journal of Pharmacology, 2001, 417, 99-109.	3.5	13
67	Altered regulation of calcium channels and exocytosis in single human pheochromocytoma cells. Pflugers Archiv European Journal of Physiology, 2000, 440, 253-263.	2.8	14
68	Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. European Journal of Neuroscience, 1999, 11, 3574-3584.	2.6	57
69	Voltage inactivation of Ca2+entry and secretion associated with N- and P/Q-type but not L-type Ca2+channels of bovine chromaffin cells. Journal of Physiology, 1999, 516, 421-432.	2.9	44
70	Effects of the neuroprotectant lubeluzole on the cytotoxic actions of veratridine, barium, ouabain and 6-hydroxydopamine in chromaffin cells. British Journal of Pharmacology, 1998, 124, 1187-1196.	5.4	12
71	Q-type Ca 2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells. Pflugers Archiv European Journal of Physiology, 1998, 435, 472-478.	2.8	50
72	Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions. Pflugers Archiv European Journal of Physiology, 1998, 436, 75-82.	2.8	44

#	Article	IF	CITATIONS
73	Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflugers Archiv European Journal of Physiology, 1998, 436, 696-704.	2.8	43
74	Autocrine/paracrine modulation of calcium channels in bovine chromaffin cells. Pflugers Archiv European Journal of Physiology, 1998, 437, 104-113.	2.8	20
75	Unmasking the functions of the chromaffin cell Â7 nicotinic receptor by using short pulses of acetylcholine and selective blockers. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14184-14189.	7.1	107
76	Synergism between toxin-Î ³ from Brazilian scorpion <i>Tityus serrulatus</i> and veratridine in chromaffin cells. American Journal of Physiology - Cell Physiology, 1998, 274, C1745-C1754.	4.6	17
77	Calcium Channels for Exocytosis in Chromaffin Cells. Advances in Pharmacology, 1997, 42, 91-94.	2.0	7
78	`Wide-spectrum Ca2+ channel antagonists': lipophilicity, inhibition, and recovery of secretion in chromaffin cells. European Journal of Pharmacology, 1997, 325, 109-119.	3.5	26
79	Differential effects of forskolin and 1,9-dideoxy-forskolin on nicotinic receptor- and K+-induced responses in chromaffin cells. European Journal of Pharmacology, 1997, 329, 189-199.	3.5	7
80	Distinct effects of ω-toxins and various groups of Ca2+-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. European Journal of Pharmacology, 1997, 320, 249-257.	3.5	30
81	Drastic facilitation by α-latrotoxin of bovine chromaffin cell exocytosis without measurable enhancement of Ca2+entry or [Ca2+]i. Journal of Physiology, 1997, 502, 481-496.	2.9	22
82	Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes. British Journal of Pharmacology, 1997, 122, 275-285.	5.4	27
83	Analogies and differences between ï‰-conotoxins MVIIC and MVIID: binding sites and functions in bovine chromaffin cells. Pflugers Archiv European Journal of Physiology, 1997, 435, 55-64.	2.8	27
84	Differential effects of forskolin and 1,9-dideoxy-forskolin on nicotinic receptor- and K+-induced responses in chromaffin cells. European Journal of Pharmacology, 1997, 329, 189-199.	3.5	3
85	Otilonium: a potent blocker of neuronal nicotinic ACh receptors in bovine chromaffin cells. British Journal of Pharmacology, 1996, 117, 463-470.	5.4	8
86	Inhibition of nicotinic receptorâ€mediated responses in bovine chromaffin cells by diltiazem. British Journal of Pharmacology, 1996, 118, 1301-1307.	5.4	19
87	Blocking effects of otilonium on Ca2+ channels and secretion in rat chromaffin cells. European Journal of Pharmacology, 1996, 298, 199-205.	3.5	11
88	Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with solutions containing low and high Ba2+ concentrations. Pflugers Archiv European Journal of Physiology, 1996, 432, 1030-1038.	2.8	61
89	Synthesis and pharmacology of Alkanediguanidinium compounds that block the neuronal nicotinic acetylcholine receptor. Bioorganic and Medicinal Chemistry, 1996, 4, 1177-1183.	3.0	18
90	Opioid Inhibition of Ca2+Channel Subtypes in Bovine Chromaffin Cells: Selectivity of Action and Voltage-dependence. European Journal of Neuroscience, 1996, 8, 1561-1570.	2.6	69

#	Article	IF	CITATIONS
91	Selective block of Ca2+-dependent K+current in crayfish neuromuscular system and chromaffin cells by sea anemoneBunodosoma cangicumvenom. Journal of Neuroscience Research, 1995, 42, 539-546.	2.9	7
92	Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflugers Archiv European Journal of Physiology, 1995, 430, 55-63.	2.8	71
93	Density of apamin-sensitive Ca2+-dependent K+ channels in bovine chromaffin cells: Relevance to secretion. Biochemical Pharmacology, 1995, 49, 1459-1468.	4.4	12
94	Effects of tyramine and calcium on the kinetics of secretion in intact and electroporated chromaffin cells superfused at high speed. Pflugers Archiv European Journal of Physiology, 1995, 431, 283-296.	2.8	11
95	Dotarizine versus flunarizine as calcium antagonists in chromaffin cells. British Journal of Pharmacology, 1995, 114, 369-376.	5.4	43
96	Permeation by zinc of bovine chromaffin cell calcium channels: relevance to secretion. Pflugers Archiv European Journal of Physiology, 1994, 429, 231-239.	2.8	27
97	Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflugers Archiv European Journal of Physiology, 1994, 427, 348-354.	2.8	60
98	Interactions between Ca2+, PCA50941 and Bay K 8644 in bovine chromaffin cells. European Journal of Pharmacology, 1994, 268, 293-303.	2.6	7
99	Q- and L-type Ca2+channels dominate the control of secretion in bovine chromaffin cells. FEBS Letters, 1994, 349, 331-337.	2.8	105
100	Calcium channel subtypes in cat chromaffin cells Journal of Physiology, 1994, 477, 197-213.	2.9	63
101	The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines. European Journal of Pharmacology, 1993, 247, 199-207.	2.6	59
102	ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Letters, 1993, 336, 259-262.	2.8	71
103	Bovine Chromaffin Cells Posses FTX-Sensitive Calcium Channels. Biochemical and Biophysical Research Communications, 1993, 194, 671-676.	2.1	53
104	R56865 inhibits catecholamine release from bovine chromaffin cells by blocking calcium channels. British Journal of Pharmacology, 1993, 110, 1149-1155.	5.4	19
105	ATP modulation of calcium channels in chromaffin cells Journal of Physiology, 1993, 470, 55-72.	2.9	102
106	(+)â€Isradipine but not (â^')â€Bayâ€Kâ€8644 exhibits voltageâ€dependent effects on cat adrenal catecholamine release. British Journal of Pharmacology, 1991, 102, 289-296.	5.4	2
107	Separation of two pathways for calcium entry into chromaffin cells. British Journal of Pharmacology, 1991, 103, 1073-1078.	5.4	44
108	Different sensitivities to dihydropyridines of catecholamine release from cat and ox adrenals. NeuroReport, 1990, 1, 119-122.	1.2	20

#	Article	IF	CITATIONS
109	Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Analytical Biochemistry, 1990, 185, 243-248.	2.4	198
110	A Two-Dimensional Electrophoresis Study of Phosphorylation and Dephosphorylation of Chromaffin Cell Proteins in Response to a Secretory Stimulus. Journal of Neurochemistry, 1988, 51, 1023-1030.	3.9	28
111	Dihydropyridine chirality at the chromaffin cell calcium channel. Brain Research, 1987, 408, 359-362.	2.2	14
112	Relative sensitivities of chromaffin cell calcium channels to organic and inorganic calcium antagonists. Neuroscience Letters, 1987, 77, 333-338.	2.1	40
113	Dihydropyridine Modulation of the Chromaffin Cell Secretory Response. Journal of Neurochemistry, 1987, 48, 483-490.	3.9	38
114	Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature, 1984, 309, 69-71.	27.8	262