Kuniaki Nagamine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201588/publications.pdf Version: 2024-02-01

KUNIAKI NACAMINE

#	Article	IF	CITATIONS
1	Highly Conductive Stretchable and Biocompatible Electrode–Hydrogel Hybrids for Advanced Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 1919-1927.	7.6	138
2	Conducting Polymer Electrodes Printed on Hydrogel. Journal of the American Chemical Society, 2010, 132, 13174-13175.	13.7	136
3	Organic Transdermal Iontophoresis Patch with Builtâ€in Biofuel Cell. Advanced Healthcare Materials, 2015, 4, 506-510.	7.6	94
4	Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. Physical Chemistry Chemical Physics, 2010, 12, 10012.	2.8	91
5	Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Scientific Reports, 2019, 9, 10102.	3.3	90
6	Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab on A Chip, 2011, 11, 513-517.	6.0	80
7	Intrinsically Stretchable Electrochromic Display by a Composite Film of Poly(3,4-ethylenedioxythiophene) and Polyurethane. ACS Applied Materials & Interfaces, 2017, 9, 19513-19518.	8.0	78
8	Porous polymer microneedles with interconnecting microchannels for rapid fluid transport. RSC Advances, 2016, 6, 48630-48635.	3.6	74
9	Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Scientific Reports, 2017, 7, 3538.	3.3	69
10	Electrochemical mutagen screening using microbial chip. Biosensors and Bioelectronics, 2006, 21, 1202-1209.	10.1	60
11	Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness. Biomaterials, 2010, 31, 6981-6986.	11.4	60
12	Micropatterning contractile C ₂ C ₁₂ myotubes embedded in a fibrin gel. Biotechnology and Bioengineering, 2010, 105, 1161-1167.	3.3	53
13	A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors. Scientific Reports, 2018, 8, 3922.	3.3	52
14	Electrochemical Monitoring of Cellular Signal Transduction with a Secreted Alkaline Phosphatase Reporter System. Analytical Chemistry, 2006, 78, 7625-7631.	6.5	51
15	Electrophoretic Cell Manipulation and Electrochemical Gene-Function Analysis Based on a Yeast Two-Hybrid System in a Microfluidic Device. Analytical Chemistry, 2008, 80, 3722-3727.	6.5	48
16	An array of porous microneedles for transdermal monitoring of intercellular swelling. Biomedical Microdevices, 2017, 19, 68.	2.8	43
17	A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Scientific Reports, 2018, 8, 6368.	3.3	43
18	Totally shape-conformable electrode/hydrogel composite for on-skin electrophysiological measurements. Sensors and Actuators B: Chemical. 2016, 237, 49-53.	7.8	41

KUNIAKI NAGAMINE

#	Article	IF	CITATIONS
19	Printed Organic Transistorâ€Based Enzyme Sensor for Continuous Glucose Monitoring in Wearable Healthcare Applications. ChemElectroChem, 2018, 5, 3881-3886.	3.4	36
20	Conducting Polymer Microelectrodes Anchored to Hydrogel Films. ACS Macro Letters, 2012, 1, 400-403.	4.8	35
21	Respiration activity of Escherichia coli entrapped in a cone-shaped microwell and cylindrical micropore monitored by scanning electrochemical microscopy (SECM). Analyst, The, 2004, 129, 529.	3.5	34
22	On-chip electrochemical measurement of β-galactosidase expression using a microbial chip. Chemical Communications, 2004, , 248-249.	4.1	30
23	On-Chip Transformation of Bacteria. Analytical Chemistry, 2005, 77, 4278-4281.	6.5	29
24	Printed Organic Transistor-based Biosensors for Non-invasive Sweat Analysis. Analytical Sciences, 2020, 36, 291-302.	1.6	26
25	Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films. ACS Biomaterials Science and Engineering, 2015, 1, 329-334.	5.2	22
26	A fully screen-printed potentiometric chloride ion sensor employing a hydrogel-based touchpad for simple and non-invasive daily electrolyte analysis. Analytical and Bioanalytical Chemistry, 2021, 413, 1883-1891.	3.7	21
27	Amperometric detection of the bacterial metabolic regulation with a microbial array chip. Biosensors and Bioelectronics, 2005, 21, 145-151.	10.1	20
28	Influence of Tip Size on Single Yeast Cell Imaging Using Scanning Electrochemical Microscopy. Electroanalysis, 2011, 23, 1168-1174.	2.9	20
29	Contractile Skeletal Muscle Cells Cultured with a Conducting Soft Wire for Effective, Selective Stimulation. Scientific Reports, 2018, 8, 2253.	3.3	20
30	Detection of 1,5-anhydroglucitol as a Biomarker for Diabetes Using an Organic Field-Effect Transistor-Based Biosensor. Technologies, 2018, 6, 77.	5.1	20
31	Application of microbial chip for amperometric detection of metabolic alteration in bacteria. Sensors and Actuators B: Chemical, 2005, 108, 676-682.	7.8	19
32	Cytokine assay on a cellular chip by combining collagen gel embedded culture with scanning electrochemical microscopy. Analytica Chimica Acta, 2006, 566, 55-59.	5.4	19
33	Hydrogel Microchambers Integrated with Organic Electrodes for Efficient Electrical Stimulation of Human iPSCâ€Derived Cardiomyocytes. Macromolecular Bioscience, 2019, 19, 1900060.	4.1	19
34	Fabrication of microbial chip using collagen gel microstructure. Lab on A Chip, 2003, 3, 313.	6.0	18
35	Electrochemical characterization of enzymatic activity of yeast cells entrapped in a poly(dimethylsiloxane) microwell on the basis of limited diffusion system. Analyst, The, 2009, 134, 182-187.	3.5	16
36	Electrochemical screening of recombinant protein solubility inEscherichia coli using scanning electrochemical microscopy (SECM). Biotechnology and Bioengineering, 2007, 96, 1008-1013.	3.3	15

KUNIAKI NAGAMINE

#	Article	IF	CITATIONS
37	Organic-transistor-based biosensors interfaced with human skin for non-invasive perspiration analysis. Sensors and Actuators B: Chemical, 2021, 349, 130778.	7.8	15
38	Stretchable, transparent and molecular permeable honeycomb electrodes and their hydrogel hybrids prepared by the breath figure method and sputtering of metals. RSC Advances, 2015, 5, 88414-88418.	3.6	14
39	Electrochemical Characterization of TEMPO Radical in Ionic Liquids. Electrochemistry, 2020, 88, 34-38.	1.4	13
40	Electric Charge Detection of Sparse Organic Acid Molecules Using an Organic Field-Effect Transistor (OFET)-Based Sensor. Bulletin of the Chemical Society of Japan, 2018, 91, 1020-1025.	3.2	12
41	Minimally-invasive transepidermal potentiometry with microneedle salt bridge. Biomedical Microdevices, 2016, 18, 55.	2.8	10
42	A Microbial Chip for Glucose Sensing Studied with Scanning Electrochemical Microscopy (SECM). Electrochemistry, 2003, 71, 436-438.	1.4	10
43	Microfluidic Devices for Electrochemical Measurement of Photosynthetic Activity of Cyanobacteria Microcystis Cells. Analytical Sciences, 2012, 28, 69-72.	1.6	9
44	Electrochemical enzyme biosensor for carnitine detection based on cathodic stripping voltammetry. Sensors and Actuators B: Chemical, 2020, 321, 128473.	7.8	9
45	Electrodes Combined with an Agarose Stamp for Addressable Micropatterning. Langmuir, 2010, 26, 11526-11529.	3.5	7
46	Detection of Odorant Molecules in the Gaseous Phase Using α-, β-, and γ-Cyclodextrin Films on a Quartz Crystal Microbalance. Technologies, 2018, 6, 63.	5.1	7
47	An electrochemical device with microwells for determining the photosynthetic activity of a single cyanobacterium. Sensors and Actuators B: Chemical, 2011, 153, 474-478.	7.8	6
48	Hydrogel-based bioassay sheets for in vitro evaluation of contraction-dependent metabolic regulation in skeletal muscle cells. Biomaterials Science, 2014, 2, 252-256.	5.4	6
49	Charge-accumulative Potentiometric Measurements for Ammonia Detection Using an Enzymatic Cascade Reaction on a Prussian Blue Electrode. Chemistry Letters, 2018, 47, 1412-1415.	1.3	6
50	Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices. Journal of Bioscience and Bioengineering, 2014, 118, 94-97.	2.2	4
51	Electroporation of Adherent Cells by Direct Lamination of Hydrogel-based Microelectrode Substrates. Chemistry Letters, 2014, 43, 444-446.	1.3	4
52	Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors. ACS Omega, 2020, 5, 32844-32851.	3.5	4
53	Skin Patches: Organic Transdermal Iontophoresis Patch with Builtâ€in Biofuel Cell (Adv. Healthcare) Tj ETQq1 1	0.784314 7.6	rg&T /Overlo
54	Highly stretchable cell-cultured hydrogel sheet. RSC Advances, 2015, 5, 66334-66338.	3.6	3

KUNIAKI NAGAMINE

#	Article	IF	CITATIONS
55	Development of a highly sensitive Prussian-blue-based enzymatic biosensor for l-carnitine employing the thiol/disulfide exchange reaction. Analytical Sciences, 2022, 38, 963-968.	1.6	3
56	An Oxygen Responsive Microparticle-Patterned Hydrogel Sheet for Enzyme Activity Imaging. Electrochemistry, 2012, 80, 318-320.	1.4	2
57	Flexible and printed biosensors based on organic TFT devices. , 2019, , 291-306.		2
58	Hydrogel-based sealed microchamber arrays for rapid medium exchange and drug testing of cell spheroids. Biomedical Microdevices, 2020, 22, 49.	2.8	2
59	Hydrogel-supported skeletal muscle cell-based bioassay system. , 2011, , .		1
60	Stable Immobilization of Mediator in Porous Carbon Material via Capping Technique for Fabricating Sensitive Enzyme-based Glucose Sensor. Sensors and Materials, 2021, 33, 3245.	0.5	1
61	Stretchable patches and devices toward electronics on the skin. , 2016, , .		0
62	Hydrogel-based electrical stimulation culture system to control the engineered cellular activities driven by nano biomolecules. , 2016, , .		0
63	Organic skin patch with built-in enzymatic battery. , 2016, , .		0
64	A heat-melt adhesive-assisted transferable electrode films. Scientific Reports, 2021, 11, 36.	3.3	0
65	2C42 Development of the transdermal drug delivery patch driven by enzymatic reaction. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2015, 2015.27, 417-418.	0.0	0
66	Development of Electrical Device for Evaluation and Control of Skin Function. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2017, 2017.28, 2B12.	0.0	0
67	Development of the printed organic transistor-based biosensors for non-invasive physiological sensing. Denki Kagaku, 2020, 88, 326-330.	0.0	0
68	Printed Electronics-Enabled Wearable/Portable Physical and Chemical Sensors for Personal Digital Healthcare Usage. , 2021, , .		0