
Leonardo GuzmÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyamidoamine dendrimers of the third generation–chlorin e6 nanoconjugates: Nontoxic hybrid polymers with photodynamic activity. Journal of Applied Polymer Science, 2022, 139, 51835.	2.6	5
2	Rational Design and In Vitro Evaluation of Novel Peptides Binding to Neuroligin-1 for Synaptic Targeting. Journal of Chemical Information and Modeling, 2020, 60, 995-1004.	5.4	2
3	Polyamidoamine-based nanovector for the efficient delivery of methotrexate to U87 glioma cells. Nanomedicine, 2020, 15, 2771-2784.	3.3	9
4	Stereospecific Inhibition of Ethanol Potentiation on Glycine Receptor by M554 Stereoisomers. Journal of Chemical Information and Modeling, 2020, 60, 6634-6641.	5.4	0
5	Changes in PGCâ€1α/SIRT1 Signaling Impact on Mitochondrial Homeostasis in Amyloid-Beta Peptide Toxicity Model. Frontiers in Pharmacology, 2020, 11, 709.	3.5	27
6	Modulation of glycine receptor single-channel conductance by intracellular phosphorylation. Scientific Reports, 2020, 10, 4804.	3.3	14
7	Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications. Journal of Materials Science, 2020, 55, 6976-6991.	3.7	5
8	Mechanism-Based Rational Discovery and <i>In Vitro</i> Evaluation of Novel Microtubule Stabilizing Agents with Non-Taxol-Competitive Activity. Journal of Chemical Information and Modeling, 2020, 60, 3204-3213.	5.4	6
9	Inhibitory Actions of Tropeines on the α3 Glycine Receptor Function. Frontiers in Pharmacology, 2019, 10, 331.	3.5	4
10	17 Oxo Sparteine and Lupanine, Obtained from Cytisus scoparius, Exert a Neuroprotection against Soluble Oligomers of Amyloid-β Toxicity by Nicotinic Acetylcholine Receptors. Journal of Alzheimer's Disease, 2019, 67, 343-356.	2.6	8
11	Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharmaceutical Development and Technology, 2018, 23, 689-696.	2.4	32
12	P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology, 2018, 128, 366-378.	4.1	34
13	Cytotoxicity and in vivo plasma kinetic behavior of surface-functionalized PAMAM dendrimers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2227-2234.	3.3	27
14	Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. Nanomaterials, 2018, 8, 7.	4.1	30
15	Polyamido amine (PAMAM)-grafted magnetic nanotubes as emerging platforms for the delivery and sustained release of silibinin. Journal of Materials Science, 2017, 52, 9269-9281.	3.7	12
16	PAMAM onjugated Alumina Nanotubes as Novel Noncytotoxic Nanocarriers with Enhanced Drug Loading and Releasing Performances. Macromolecular Chemistry and Physics, 2016, 217, 1712-1722.	2.2	11
17	PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Materials Science and Engineering C, 2016, 65, 164-171.	7.3	38
18	Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons. Molecular Pharmaceutics, 2016, 13, 3395-3403.	4.6	24

Leonardo GuzmÃin

#	Article	IF	CITATIONS
19	Reversal of Ethanol-induced Intoxication by a Novel Modulator of GÎ ² Î ³ Protein Potentiation of the Glycine Receptor. Journal of Biological Chemistry, 2016, 291, 18791-18798.	3.4	6
20	Functional modulation of glycine receptors by the alkaloid gelsemine. British Journal of Pharmacology, 2016, 173, 2263-2277.	5.4	38
21	ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons. Neuropharmacology, 2016, 100, 116-123.	4.1	42
22	Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacological Research, 2015, 101, 18-29.	7.1	26
23	Evidence for <i>α</i> -Helices in the Large Intracellular Domain Mediating Modulation of the <i>α</i> 1-Glycine Receptor by Ethanol and G <i>βγ</i> . Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 148-155.	2.5	18
24	Dendrimer nanocarriers drug action: perspective for neuronal pharmacology. Neural Regeneration Research, 2015, 10, 1029.	3.0	14
25	Modulation of Neuronal Nicotinic Receptor by Quinolizidine Alkaloids Causes Neuroprotection on a Cellular Alzheimer Model. Journal of Alzheimer's Disease, 2014, 42, 143-155.	2.6	15
26	Inhibition of the Ethanol-induced Potentiation of α1 Glycine Receptor by a Small Peptide That Interferes with Gβγ Binding. Journal of Biological Chemistry, 2012, 287, 40713-40721.	3.4	16
27	Synaptic Silencing and Plasma Membrane Dyshomeostasis Induced by Amyloid-β Peptide are Prevented by Aristotelia chilensis Enriched Extract. Journal of Alzheimer's Disease, 2012, 31, 879-889.	2.6	32
28	Potentiation and inhibition of glycine receptors by tutin. Neuropharmacology, 2011, 60, 453-459.	4.1	14
29	Inhibitory Activities on Mammalian Central Nervous System Receptors and Computational Studies of Three Sesquiterpene Lactones from Coriaria ruscifolia subsp. ruscifolia. Chemical and Pharmaceutical Bulletin, 2011, 59, 161-165.	1.3	8
30	Synaptic failure and adenosine triphosphate imbalance induced by amyloidâ€Î² aggregates are prevented by blueberryâ€enriched polyphenols extract. Journal of Neuroscience Research, 2011, 89, 1499-1508.	2.9	42
31	Molecular Requirements for Ethanol Differential Allosteric Modulation of Glycine Receptors Based on Selective Gβγ Modulation. Journal of Biological Chemistry, 2010, 285, 30203-30213.	3.4	44
32	Blockade of Ethanol-Induced Potentiation of Glycine Receptors by a Peptide That Interferes with Gβγ Binding. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 933-939.	2.5	22
33	Inhibitory effects of tutin on glycine receptors in spinal neurons. European Journal of Pharmacology, 2007, 559, 61-64.	3.5	21
34	Historical and Current Perspectives of Neuroactive Compounds Derived from Latin America. Mini-Reviews in Medicinal Chemistry, 2006, 6, 997-1008.	2.4	8
35	Molecular Determinants for G Protein βγ Modulation of Ionotropic Glycine Receptors. Journal of Biological Chemistry, 2006, 281, 39300-39307.	3.4	54
36	A Cβγ stimulated adenylyl cyclase is involved inxenopus laevisoocyte maturation. Journal of Cellular Physiology, 2005, 202, 223-229.	4.1	16

LEONARDO GUZMÃIN

#	Article	IF	CITATIONS
37	Human brain synembryn interacts with Gsα and Gqα and is translocated to the plasma membrane in response to isoproterenol and carbachol. Journal of Cellular Physiology, 2003, 195, 151-157.	4.1	56
38	S111N mutation in the helical domain of human Csα reduces its GDP/GTP exchange rate. Journal of Cellular Biochemistry, 2002, 85, 615-620.	2.6	9
39	Gαs levels regulateXenopus laevisoocyte maturation. Molecular Reproduction and Development, 2002, 63, 104-109.	2.0	22
40	The C2cytosolic loop of adenylyl cyclase interacts with the activated form of Gαs. FEBS Letters, 1998, 441, 437-440.	2.8	1
41	Chemical Modification of Genypterus maculatus Arginase by Woodward's Reagent K and Diethyl Pyrocarbonate: Evidence for an Essential Carboxylate and a Nonessential, Albeit Important Histidine Residue. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1997, 118, 633-637.	1.6	2