Edward C Holmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2201278/publications.pdf

Version: 2024-02-01

693 papers 95,289 citations

131 h-index 268 g-index

800 all docs

 $\begin{array}{c} 800 \\ \\ \text{docs citations} \end{array}$

800 times ranked

81803 citing authors

#	Article	IF	CITATIONS
1	Zoonotic disease and virome diversity in bats. Current Opinion in Virology, 2022, 52, 192-202.	2.6	60
2	Assessment of Coronavirus Disease 2019 Intervention Strategies in the Nordic Countries Using Genomic Epidemiology. Open Forum Infectious Diseases, 2022, 9, ofab665.	0.4	0
3	Diversity and evolution of the animal virome. Nature Reviews Microbiology, 2022, 20, 321-334.	13.6	82
4	Viromes of Freshwater Fish with Lacustrine and Diadromous Life Histories Differ in Composition. Viruses, 2022, 14, 257.	1.5	8
5	A time-series meta-transcriptomic analysis reveals the seasonal, host, and gender structure of mosquito viromes. Virus Evolution, 2022, 8, veac006.	2.2	20
6	Surveillance of Rodent Pests for SARS-CoV-2 and Other Coronaviruses, Hong Kong. Emerging Infectious Diseases, 2022, 28, 467-470.	2.0	15
7	Replacement of the Gamma by the Delta variant in Brazil: Impact of lineage displacement on the ongoing pandemic. Virus Evolution, 2022, 8, veac024.	2.2	37
8	Co-infecting pathogens can contribute to inflammatory responses and severe symptoms in COVID-19. Journal of Thoracic Disease, 2022, 14, 355-370.	0.6	5
9	Total infectome characterization of respiratory infections in pre-COVID-19 Wuhan, China. PLoS Pathogens, 2022, 18, e1010259.	2.1	16
10	COVID-19—lessons for zoonotic disease. Science, 2022, 375, 1114-1115.	6.0	40
11	Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell, 2022, 185, 1117-1129.e8.	13.5	106
12	Human land use impacts viral diversity and abundance in a New Zealand river. Virus Evolution, 2022, 8, veac032.	2.2	13
13	Unrecognized diversity of mammalian orthoreoviruses in North American bats. Virology, 2022, 571, 1-11.	1.1	7
14	Surveillance of Rodent Pests for SARS-CoV-2 and Other Coronaviruses, Hong Kong Emerging Infectious Diseases, 2022, 28, 467-470.	2.0	4
15	Diagnosis and analysis of unexplained cases of childhood encephalitis in Australia using metatranscriptomic sequencing. Journal of General Virology, 2022, 103, .	1.3	2
16	A total infectome approach to understand the etiology of infectious disease in pigs. Microbiome, 2022, 10, 73.	4.9	11
17	Australia as a global sink for the genetic diversity of avian influenza A virus. PLoS Pathogens, 2022, 18, e1010150.	2.1	9
18	Co-infection with SARS-CoV-2 Omicron and Delta variants revealed by genomic surveillance. Nature Communications, 2022, 13, 2745.	5.8	64

#	Article	IF	CITATIONS
19	Off-season RSV epidemics in Australia after easing of COVID-19 restrictions. Nature Communications, 2022, 13, .	5.8	135
20	Transcriptome Mining Expands Knowledge of RNA Viruses across the Plant Kingdom. Journal of Virology, 2022, 96, .	1.5	32
21	Resolving deep evolutionary relationships within the RNA virus phylum <i>Lenarviricota</i> . Virus Evolution, 2022, 8, .	2.2	11
22	Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand. Viruses, 2022, 14, 1364.	1.5	9
23	The Ecology of Viral Emergence. Annual Review of Virology, 2022, 9, 173-192.	3.0	20
24	Low Intrahost and Interhost Genetic Diversity of Carnivore Protoparvovirus 1 in Domestic Cats during a Feline Panleukopenia Outbreak. Viruses, 2022, 14, 1412.	1.5	1
25	The enteric virome of cats with feline panleukopenia differs in abundance and diversity from healthy cats. Transboundary and Emerging Diseases, 2022, 69, .	1.3	6
26	Total infectomes of 162 SARS-CoV-2 cases using meta-transcriptomic sequencing. Journal of Infection, 2021, 82, e44-e48.	1.7	7
27	SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Veterinary Microbiology, 2021, 252, 108933.	0.8	48
28	Collecting and managing taxonomic data with NCBI-taxonomist. Bioinformatics, 2021, 36, 5548-5550.	1.8	1
29	Addendum: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 2021, 6, 415-415.	5.9	65
30	A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerging Microbes and Infections, 2021, 10, 376-383.	3.0	74
31	Metagenomic sequencing reveals a lack of virus exchange between native and invasive freshwater fish across the Murray–Darling Basin, Australia. Virus Evolution, 2021, 7, veab034.	2.2	27
32	Bioinformatics resources for SARS-CoV-2 discovery and surveillance. Briefings in Bioinformatics, 2021, 22, 631-641.	3.2	38
33	Virome composition in marine fish revealed by meta-transcriptomics. Virus Evolution, 2021, 7, veab005.	2.2	58
34	High Resolution Metatranscriptomic Characterization of the Pulmonary RNA Virome After Lung Transplantation. Transplantation, 2021, Publish Ahead of Print, 2546-2553.	0.5	5
35	Understanding the Impact of Resistance to Influenza Antivirals. Clinical Microbiology Reviews, 2021, 34, .	5.7	30
36	A Novel Rubi-Like Virus in the Pacific Electric Ray (Tetronarce californica) Reveals the Complex Evolutionary History of the Matonaviridae. Viruses, 2021, 13, 585.	1.5	12

#	Article	IF	CITATIONS
37	Genomic Evidence of In-Flight Transmission of SARS-CoV-2 Despite Predeparture Testing. Emerging Infectious Diseases, 2021, 27, 687-693.	2.0	58
38	Partial immunity and SARS-CoV-2 mutationsâ€"Response. Science, 2021, 372, 354-355.	6.0	2
39	Emergence and Spread of SARS-CoV-2 Lineages B.1.1.7 and P.1 in Italy. Viruses, 2021, 13, 794.	1.5	32
40	Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil. Nature Communications, 2021, 12, 2296.	5.8	29
41	Pathogenicity and transmissibility of a novel respirovirus isolated from a Malayan pangolin. Journal of General Virology, 2021, 102, .	1.3	7
42	How accurately can we assess zoonotic risk?. PLoS Biology, 2021, 19, e3001135.	2.6	56
43	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	6.0	185
44	Infectious disease phylodynamics with occurrence data. Methods in Ecology and Evolution, 2021, 12, 1498-1507.	2.2	14
45	Use of Genomics to Track Coronavirus Disease Outbreaks, New Zealand. Emerging Infectious Diseases, 2021, 27, 1317-1322.	2.0	28
46	Unbiased Characterization of the Microbiome and Virome of Questing Ticks. Frontiers in Microbiology, 2021, 12, 627327.	1.5	11
47	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Research, 2021, 6, 121.	0.9	115
48	Slippery when wet: cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary history of the <i>Coronaviridae</i> . Virus Evolution, 2021, 7, veab050.	2.2	23
49	Retrospective meta-transcriptomic identification of severe dengue in a traveller returning from Africa to Sweden, 1990. One Health, 2021, 12, 100217.	1.5	1
50	Retrospective screening of routine respiratory samples revealed undetected community transmission and missed intervention opportunities for SARS-CoV-2 in the United Kingdom. Journal of General Virology, 2021, 102, .	1.3	10
51	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	5.9	221
52	Sequence dynamics of three influenza A virus strains grown in different MDCK cell lines, including those expressing different sialic acid receptors. Journal of Evolutionary Biology, 2021, 34, 1878-1900.	0.8	5
53	After the pandemic: perspectives on the future trajectory of COVID-19. Nature, 2021, 596, 495-504.	13.7	260
54	Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evolution, 2021, 7, veab064.	2.2	774

#	Article	IF	CITATIONS
55	Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 2021, 184, 4380-4391.e14.	13.5	261
56	Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evolution, $2021, 7, .$	2.2	28
57	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	6.0	80
58	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Research, 2021, 6, 121.	0.9	129
59	RNA virome abundance and diversity is associated with host age in a bird species. Virology, 2021, 561, 98-106.	1.1	19
60	Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Virus Evolution, 2021, 7, veab080.	2.2	24
61	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	13.5	330
62	Current challenges to virus discovery by meta-transcriptomics. Current Opinion in Virology, 2021, 51, 48-55.	2.6	56
63	Feline Calicivirus Virulent Systemic Disease: Clinical Epidemiology, Analysis of Viral Isolates and In Vitro Efficacy of Novel Antivirals in Australian Outbreaks. Viruses, 2021, 13, 2040.	1.5	14
64	RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. Journal of General Virology, 2021, 102, .	1.3	4
65	Metagenomic Identification of Viral Sequences in Laboratory Reagents. Viruses, 2021, 13, 2122.	1.5	21
66	The impact of public health interventions in the Nordic countries during the first year of SARS-CoV-2 transmission and evolution. Eurosurveillance, 2021, 26, .	3.9	8
67	Characterization of the Gut Microbiome and Resistomes of Wild and Zoo-Captive Macaques. Frontiers in Veterinary Science, 2021, 8, 778556.	0.9	3
68	Meta-transcriptomic analysis of the virome and microbiome of the invasive Indian myna (Acridotheres) Tj ETQq0 (0 Q <u>r</u> gBT /(Overlock 10 T
69	An Ecosystems Perspective on Virus Evolution and Emergence. Trends in Microbiology, 2020, 28, 165-175.	3.5	86
70	Human pegivirus in brain tissue of a patient with encephalitis. Diagnostic Microbiology and Infectious Disease, 2020, 96, 114898.	0.8	11
71	The Ecology and Evolution of Influenza Viruses. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038489.	2.9	97
72	Novel hepaci- and pegi-like viruses in native Australian wildlife and non-human primates. Virus Evolution, 2020, 6, veaa064.	2.2	21

#	Article	IF	CITATIONS
73	Red fox viromes in urban and rural landscapes. Virus Evolution, 2020, 6, veaa065.	2.2	27
74	The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Current Biology, 2020, 30, R1215-R1231.	1.8	33
75	Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures. Viruses, 2020, 12, 1180.	1.5	26
76	Divergent Influenza-Like Viruses of Amphibians and Fish Support an Ancient Evolutionary Association. Viruses, 2020, 12, 1042.	1.5	23
77	Meta-Transcriptomic Discovery of a Divergent Circovirus and a Chaphamaparvovirus in Captive Reptiles with Proliferative Respiratory Syndrome. Viruses, 2020, 12, 1073.	1.5	14
78	Viral CpG Deficiency Provides No Evidence That Dogs Were Intermediate Hosts for SARS-CoV-2. Molecular Biology and Evolution, 2020, 37, 2706-2710.	3. 5	18
79	Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiology Reviews, 2020, 44, 631-644.	3.9	75
80	A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 2020, 5, 1403-1407.	5.9	2,291
81	The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biology, 2020, 21, 175.	3.8	22
82	Identification of Novel Astroviruses in the Gastrointestinal Tract of Domestic Cats. Viruses, 2020, 12, 1301.	1.5	8
83	The ongoing COVID-19 epidemic in Minas Gerais, Brazil: insights from epidemiological data and SARS-CoV-2 whole genome sequencing. Emerging Microbes and Infections, 2020, 9, 1824-1834.	3.0	42
84	Diversity and circulation of Jingmen tick virus in ticks and mammals. Virus Evolution, 2020, 6, veaa051.	2.2	38
85	Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathogens, 2020, 16, e1008759.	2.1	27
86	Identifying the Risk of SARS-CoV-2 Infection and Environmental Monitoring in Airborne Infectious Isolation Rooms (AIIRs). Virologica Sinica, 2020, 35, 785-792.	1.2	14
87	Meta-transcriptomic identification of Trypanosoma spp. in native wildlife species from Australia. Parasites and Vectors, 2020, 13, 447.	1.0	14
88	Diverse and abundant resistome in terrestrial and aquatic vertebrates revealed by transcriptional analysis. Scientific Reports, 2020, 10, 18870.	1.6	13
89	Response to Brinkmann et al. "Re-assembly of 19th century smallpox vaccine genomes reveals the contemporaneous use of horsepox and horsepox-related viruses in the United States― Genome Biology, 2020, 21, 287.	3.8	2
90	Genomic Epidemiology of the First Wave of SARS-CoV-2 in Italy. Viruses, 2020, 12, 1438.	1.5	39

#	Article	IF	CITATIONS
91	Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand. Nature Communications, 2020, 11, 6351.	5.8	100
92	Coding-Complete Genome Sequence of Yada Yada Virus, a Novel Alphavirus Detected in Australian Mosquitoes. Microbiology Resource Announcements, 2020, 9, .	0.3	10
93	Meta-Transcriptomic Identification of Divergent Amnoonviridae in Fish. Viruses, 2020, 12, 1254.	1.5	16
94	Blood molecular markers associated with COVIDâ€19 immunopathology and multiâ€organ damage. EMBO Journal, 2020, 39, e105896.	3.5	123
95	Unmapped RNA Virus Diversity in Termites and Their Symbionts. Viruses, 2020, 12, 1145.	1.5	28
96	A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology, 2020, 30, 2196-2203.e3.	1.8	480
97	Newly identified viral genomes in pangolins with fatal disease. Virus Evolution, 2020, 6, veaa020.	2.2	31
98	Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 2020, 583, 282-285.	13.7	1,453
99	Identification of hepatitis C virus in the common bed bug $\hat{a} \in \hat{a}$ a potential, but uncommon route for HCV infection?. Emerging Microbes and Infections, 2020, 9, 1429-1431.	3.0	12
100	A Divergent Articulavirus in an Australian Gecko Identified Using Meta-Transcriptomics and Protein Structure Comparisons. Viruses, 2020, 12, 613.	1.5	19
101	The proximal origin of SARS-CoV-2. Nature Medicine, 2020, 26, 450-452.	15.2	3,871
102	A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell, 2020, 181, 223-227.	13.5	662
103	A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579, 265-269.	13.7	9,370
104	High resolution metagenomic characterization of complex infectomes in paediatric acute respiratory infection. Scientific Reports, 2020, 10, 3963.	1.6	26
105	Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nature Medicine, 2020, 26, 1398-1404.	15.2	283
106	Metatranscriptomic Analysis of Virus Diversity in Urban Wild Birds with Paretic Disease. Journal of Virology, 2020, 94, .	1.5	21
107	The use of taxon-specific reference databases compromises metagenomic classification. BMC Genomics, 2020, 21, 184.	1.2	30
108	We shouldn't worry when a virus mutates during disease outbreaks. Nature Microbiology, 2020, 5, 529-530.	5.9	136

#	Article	IF	CITATIONS
109	Properties and abundance of overlapping genes in viruses. Virus Evolution, 2020, 6, veaa009.	2.2	36
110	Discovery and Prevalence of Divergent RNA Viruses in European Field Voles and Rabbits. Viruses, 2020, 12, 47.	1.5	9
111	Identification of a Novel Papillomavirus Associated with Squamous Cell Carcinoma in a Domestic Cat. Viruses, 2020, 12, 124.	1.5	22
112	Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, The, 2020, 395, 565-574.	6.3	9,430
113	CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology, 2020, 21, 103.	3.8	91
114	Infectious KoRV-related retroviruses circulating in Australian bats. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9529-9536.	3.3	31
115	An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evolution, 2020, 6, veaa027.	2.2	119
116	Comparative Analysis of RNA Virome Composition in Rabbits and Associated Ectoparasites. Journal of Virology, 2020, 94, .	1.5	30
117	Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME Journal, 2020, 14, 1768-1782.	4.4	56
118	Extensive genetic diversity and host range of rodent-borne coronaviruses. Virus Evolution, 2020, 6, veaa078.	2.2	31
119	Facemask against viral respiratory infections among Hajj pilgrims: A challenging cluster-randomized trial. PLoS ONE, 2020, 15, e0240287.	1.1	22
120	Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Science Alliance, 2020, 3, e201900542.	1.3	32
121	Genomic Epidemiology of 2015–2016 Zika Virus Outbreak in Cape Verde. Emerging Infectious Diseases, 2020, 26, 1084-1090.	2.0	24
122	Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities $\hat{a} \in \hat{a}$ a proof of concept under laboratory conditions. IMA Fungus, 2019, 10, 12.	1.7	20
123	Reply to â€~Reconciling disparate estimates of viral genetic diversity during human influenza infections'. Nature Genetics, 2019, 51, 1301-1303.	9.4	3
124	Co-circulation and persistence of multiple A/H3N2 influenza variants in China. Emerging Microbes and Infections, 2019, 8, 1157-1167.	3.0	20
125	Meta-transcriptomic identification of hepatitis B virus in cerebrospinal fluid in patients with central nervous system disease. Diagnostic Microbiology and Infectious Disease, 2019, 95, 114878.	0.8	9
126	Identification of diverse arthropod associated viruses in native Australian fleas. Virology, 2019, 535, 189-199.	1.1	24

#	Article	IF	Citations
127	Evolutionary history of Simbu serogroup orthobunyaviruses in the Australian episystem. Virology, 2019, 535, 32-44.	1.1	11
128	Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine Parvovirus Host Adaptation and Spread. Journal of Virology, 2019, 94, .	1.5	53
129	Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Current Biology, 2019, 29, 3728-3734.e4.	1.8	110
130	Identification of a Novel Equine Papillomavirus in Semen from a Thoroughbred Stallion with a Penile Lesion. Viruses, 2019, 11, 713.	1.5	16
131	Reagent contamination in viromics: all that glitters is not gold. Clinical Microbiology and Infection, 2019, 25, 1167-1168.	2.8	21
132	Epidemiology and Diversity of Rickettsiales Bacteria in Humans and Animals in Jiangsu and Jiangxi provinces, China. Scientific Reports, 2019, 9, 13176.	1.6	36
133	Influenza Viruses in Mice: Deep Sequencing Analysis of Serial Passage and Effects of Sialic Acid Structural Variation. Journal of Virology, 2019, 93, .	1.5	15
134	Human Tick-Borne Diseases in Australia. Frontiers in Cellular and Infection Microbiology, 2019, 9, 3.	1.8	37
135	Comparison of intra- and inter-host genetic diversity in rabies virus during experimental cross-species transmission. PLoS Pathogens, 2019, 15, e1007799.	2.1	22
136	Virome heterogeneity and connectivity in waterfowl and shorebird communities. ISME Journal, 2019, 13, 2603-2616.	4.4	53
137	Limited Sustained Local Transmission of HIV-1 CRF01_AE in New South Wales, Australia. Viruses, 2019, 11, 482.	1.5	4
138	Sustained Wolbachia-mediated blocking of dengue virus isolates following serial passage in Aedes aegypti cell culture. Virus Evolution, 2019, 5, vez012.	2.2	19
139	Expanding the RNA Virosphere by Unbiased Metagenomics. Annual Review of Virology, 2019, 6, 119-139.	3.0	129
140	Entrezpy: a Python library to dynamically interact with the NCBI Entrez databases. Bioinformatics, 2019, 35, 4511-4514.	1.8	11
141	Can Sequence Phylogenies Safely Infer the Origin of the Global Virome?. MBio, 2019, 10, .	1.8	37
142	The discovery of three new hare lagoviruses reveals unexplored viral diversity in this genus. Virus Evolution, 2019, 5, vez005.	2.2	16
143	A reptilian endogenous foamy virus sheds light on the early evolution of retroviruses. Virus Evolution, 2019, 5, vez001.	2.2	19
144	Discovery of a highly divergent hepadnavirus in shrews from China. Virology, 2019, 531, 162-170.	1.1	6

#	Article	IF	Citations
145	Identification of A Novel Picorna-Like Virus, Burpengary Virus, that is Negatively Associated with Chlamydial Disease in the Koala. Viruses, 2019, 11, 211.	1.5	6
146	Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. Journal of Virology, 2019, 93, .	1.5	56
147	Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biology, 2019, 17, 31.	1.7	76
148	Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. Journal of Virology, 2019, 93, .	1.5	17
149	Evolutionary stasis of viruses?. Nature Reviews Microbiology, 2019, 17, 329-329.	13.6	8
150	Shared Common Ancestry of Rodent Alphacoronaviruses Sampled Globally. Viruses, 2019, 11, 125.	1.5	35
151	Meta-Transcriptomic Comparison of the RNA Viromes of the Mosquito Vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses, 2019, 11, 1033.	1.5	64
152	Origin of the São Paulo Yellow Fever epidemic of 2017–2018 revealed through molecular epidemiological analysis of fatal cases. Scientific Reports, 2019, 9, 20418.	1.6	46
153	Distinct Lineages of Feline Parvovirus Associated with Epizootic Outbreaks in Australia, New Zealand and the United Arab Emirates. Viruses, 2019, 11, 1155.	1.5	27
154	Identification and evolution of avian endogenous foamy viruses. Virus Evolution, 2019, 5, vez049.	2.2	10
155	Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics. Viruses, 2019, 11, 1092.	1.5	16
156	Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathogens, 2019, 15, e1008218.	2.1	23
157	Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathogens, 2019, 15, e1008216.	2.1	50
158	Metagenomic discovery and co-infection of diverse wobbly possum disease viruses and a novel hepacivirus in Australian brushtail possums. One Health Outlook, 2019, 1, 5.	1.4	18
159	Extensive Diversity of RNA Viruses in Australian Ticks. Journal of Virology, 2019, 93, .	1.5	116
160	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics, 2019, 26, 116-127.	1.5	16
161	Tracking virus outbreaks in the twenty-first century. Nature Microbiology, 2019, 4, 10-19.	5.9	305
162	Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evolution, 2019, 5, vez021.	2.2	63

#	Article	IF	CITATIONS
163	Discovery of novel highly divergent RNA viruses in European rodents and rabbits. Access Microbiology, 2019, $1,\ldots$	0.2	0
164	Title is missing!. , 2019, 15, e1008216.		0
165	Title is missing!. , 2019, 15, e1008216.		0
166	Title is missing!. , 2019, 15, e1008216.		0
167	Using Metagenomics to Characterize an Expanding Virosphere. Cell, 2018, 172, 1168-1172.	13.5	219
168	Estimating evolutionary rates in giant viruses using ancient genomes. Virus Evolution, 2018, 4, vey006.	2.2	7
169	The evolutionary history of vertebrate RNA viruses. Nature, 2018, 556, 197-202.	13.7	596
170	Sudden emergence of human infections with H7N9 avian influenza A virus in Hubei province, central China. Scientific Reports, 2018, 8, 2486.	1.6	4
171	A Single Amino Acid Change in the Response Regulator PhoP, Acquired during Yersinia pestis Evolution, Affects PhoP Target Gene Transcription and Polymyxin B Susceptibility. Journal of Bacteriology, 2018, 200, .	1.0	16
172	Interplay between co-divergence and cross-species transmission in the evolutionary history of bat coronaviruses. Infection, Genetics and Evolution, 2018, 58, 279-289.	1.0	56
173	Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor. Journal of Virology, 2018, 92, .	1.5	99
174	Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Research, 2018, 243, 83-90.	1.1	120
175	Rabbit Hemorrhagic Disease Virus 2 (RHDV2; Gl.2) Is Replacing Endemic Strains of RHDV in the Australian Landscape within 18 Months of Its Arrival. Journal of Virology, 2018, 92, .	1.5	85
176	Extensive diversity and evolution of hepadnaviruses in bats in China. Virology, 2018, 514, 88-97.	1.1	16
177	Hidden diversity and evolution of viruses in market fish. Virus Evolution, 2018, 4, vey031.	2.2	54
178	A Divergent Hepatitis D-Like Agent in Birds. Viruses, 2018, 10, 720.	1.5	69
179	Evolutionary Virology at 40. Genetics, 2018, 210, 1151-1162.	1.2	51
180	A Simple Method to Detect Candidate Overlapping Genes in Viruses Using Single Genome Sequences. Molecular Biology and Evolution, 2018, 35, 2572-2581.	3.5	27

#	Article	IF	CITATIONS
181	The phylogenomics of evolving virus virulence. Nature Reviews Genetics, 2018, 19, 756-769.	7.7	152
182	Virus–virus interactions and host ecology are associated with <scp>RNA</scp> virome structure in wild birds. Molecular Ecology, 2018, 27, 5263-5278.	2.0	77
183	Transcriptome Analysis and In Situ Hybridization for FcaGHV1 in Feline Lymphoma. Viruses, 2018, 10, 464.	1.5	6
184	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	13.5	89
185	Evolution of Human Respiratory Syncytial Virus (RSV) over Multiple Seasons in New South Wales, Australia. Viruses, 2018, 10, 476.	1.5	28
186	Unbiased whole genome deep sequencing of Rotavirus Group A positive samples from rural Kenya, 2012-14 reveals high frequency of coinfection and genetic reassortment. International Journal of Infectious Diseases, 2018, 73, 203.	1.5	2
187	Draft genome assembly of the invasive cane toad, Rhinella marina. GigaScience, 2018, 7, .	3.3	60
188	No detectable effect of $\langle i \rangle$ Wolbachia w $\langle i \rangle$ Mel on the prevalence and abundance of the RNA virome of $\langle i \rangle$ Drosophila melanogaster $\langle i \rangle$. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181165.	1.2	53
189	Low evolutionary rate of infectious pancreatic necrosis virus (IPNV) in Italy is associated with reduced virulence in trout. Virus Evolution, 2018, 4, vey019.	2.2	19
190	A complex mosaic of enteroviruses shapes community-acquired hand, foot and mouth disease transmission and evolution within a single hospital. Virus Evolution, 2018, 4, vey020.	2.2	14
191	A Novel Hepadnavirus Identified in an Immunocompromised Domestic Cat in Australia. Viruses, 2018, 10, 269.	1.5	49
192	Virological Sampling of Inaccessible Wildlife with Drones. Viruses, 2018, 10, 300.	1.5	49
193	Pandemics: spend on surveillance, not prediction. Nature, 2018, 558, 180-182.	13.7	120
194	The Biological Object Notation (BON): a structured file format for biological data. Scientific Reports, 2018, 8, 9644.	1.6	1
195	Detection and Circulation of a Novel Rabbit Hemorrhagic Disease Virus in Australia. Emerging Infectious Diseases, 2018, 24, 22-31.	2.0	35
196	The diversity, evolution and origins of vertebrate RNA viruses. Current Opinion in Virology, 2018, 31, 9-16.	2.6	51
197	Viral Discovery in the Invasive Australian Cane Toad (Rhinella marina) Using Metatranscriptomic and Genomic Approaches. Journal of Virology, 2018, 92, .	1.5	13
198	Continental synchronicity of human influenza virus epidemics despite climactic variation. PLoS Pathogens, 2018, 14, e1006780.	2.1	38

#	Article	IF	Citations
199	Multiple Incursions and Recurrent Epidemic Fade-Out of H3N2 Canine Influenza A Virus in the United States. Journal of Virology, $2018, 92, .$	1.5	30
200	Complete genome of Aedes aegypti anphevirus in the Aag2 mosquito cell line. Journal of General Virology, 2018, 99, 832-836.	1.3	13
201	The impact of host genetic diversity on virus evolution and emergence. Ecology Letters, 2018, 21, 253-263.	3.0	33
202	The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathogens, 2018, 14, e1006750.	2.1	66
203	Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of Virology, 2017, 91, .	1.5	192
204	Diversity, evolution and population dynamics of avian influenza viruses circulating in the live poultry markets in China. Virology, 2017, 505, 33-41.	1.1	24
205	Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature, 2017, 544, 357-361.	13.7	398
206	Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species. Journal of Virology, 2017, 91, .	1.5	86
207	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	13.7	346
208	Autochthonous Japanese Encephalitis with Yellow Fever Coinfection in Africa. New England Journal of Medicine, 2017, 376, 1483-1485.	13.9	99
209	Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China. Journal of Virology, 2017, 91, .	1.5	23
210	A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations. Journal of Virology, 2017, 91, .	1.5	138
211	Discovery of a Highly Divergent Coronavirus in the Asian House Shrew from China Illuminates the Origin of the Alphacoronaviruses. Journal of Virology, 2017, 91, .	1.5	37
212	Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 2017, 546, 406-410.	13.7	515
213	Benign Rabbit Calicivirus in New Zealand. Applied and Environmental Microbiology, 2017, 83, .	1.4	10
214	Extensive diversity of coronaviruses in bats from China. Virology, 2017, 507, 1-10.	1.1	97
215	Multiple Sources of Genetic Diversity of Influenza A Viruses during the Hajj. Journal of Virology, 2017, 91, .	1.5	11
216	Extensive diversity of rickettsiales bacteria in ticks from Wuhan, China. Ticks and Tick-borne Diseases, 2017, 8, 574-580.	1.1	49

#	Article	IF	Citations
217	Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field. Journal of Virology, 2017, 91, .	1.5	9
218	Characterizing the virome of Ixodes ricinus ticks from northern Europe. Scientific Reports, 2017, 7, 10870.	1.6	92
219	Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9397-9402.	3.3	70
220	Predicting virus emergence amid evolutionary noise. Open Biology, 2017, 7, 170189.	1.5	149
221	High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia. Journal of Virology, 2017, 91, .	1.5	149
222	The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evolutionary Biology, 2017, 17, 118.	3.2	45
223	Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses. Journal of Virology, 2017, 91, .	1.5	26
224	A molecular portrait of maternal sepsis from Byzantine Troy. ELife, 2017, 6, .	2.8	46
225	Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses, 2017, 9, 276.	1.5	13
226	Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathogens, 2017, 13, e1006215.	2.1	224
227	<i>Francisella tularensis</i> ssp. <i>holarctica</i> in Ringtail Possums, Australia. Emerging Infectious Diseases, 2017, 23, 1198-1201.	2.0	49
228	Spread of Canine Influenza A(H3N2) Virus, United States. Emerging Infectious Diseases, 2017, 23, 1950-1957.	2.0	70
229	Persistent infections in immunocompromised hosts are rarely sources of new pathogen variants. Virus Evolution, 2017, 3, vex018.	2.2	21
230	Parasite Microbiome Project: Systematic Investigation of Microbiome Dynamics within and across Parasite-Host Interactions. MSystems, 2017, 2, .	1.7	42
231	Genomic and phenotypic characterization of myxoma virus from Great Britain reveals multiple evolutionary pathways distinct from those in Australia. PLoS Pathogens, 2017, 13, e1006252.	2.1	22
232	Highly Divergent Dengue Virus Type 2 in Traveler Returning from Borneo to Australia. Emerging Infectious Diseases, 2016, 22, 2146-2148.	2.0	29
233	Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy. Frontiers in Microbiology, 2016, 7, 1306.	1.5	33
234	Genome-scale rates of evolutionary change in bacteria. Microbial Genomics, 2016, 2, e000094.	1.0	224

#	Article	IF	CITATIONS
235	Cross-validation to select Bayesian hierarchical models in phylogenetics. BMC Evolutionary Biology, 2016, 16, 115.	3.2	19
236	Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathogens, 2016, 12, e1006041.	2.1	147
237	Revealing the Micro-scale Signature of Endemic Zoonotic Disease Transmission in an African Urban Setting. PLoS Pathogens, 2016, 12, e1005525.	2.1	65
238	Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. ELife, 2016, 5, e12994.	2.8	139
239	Plasmodium falciparum malaria in 1 st –2 nd century CE southern Italy. Current Biology, 2016, 26, R1220-R1222.	1.8	94
240	Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia. Virology Journal, 2016, 13, 206.	1.4	19
241	17th Century Variola Virus Reveals the Recent History of Smallpox. Current Biology, 2016, 26, 3407-3412.	1.8	197
242	Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Scientific Reports, 2016, 6, 38770.	1.6	87
243	Identification of novel and diverse rotaviruses in rodents and insectivores, and evidence of cross-species transmission into humans. Virology, 2016, 494, 168-177.	1.1	60
244	The evolution of Ebola virus: Insights from the 2013–2016 epidemic. Nature, 2016, 538, 193-200.	13.7	264
245	Benign Rabbit Caliciviruses Exhibit Evolutionary Dynamics Similar to Those of Their Virulent Relatives. Journal of Virology, 2016, 90, 9317-9329.	1.5	36
246	Comment on "Mutation rate and genotype variation of Ebola virus from Mali case sequences― Science, 2016, 353, 658-658.	6.0	6
247	Pathogen population bottlenecks and adaptive landscapes: overcoming the barriers to disease emergence. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160727.	1.2	46
248	Redefining the invertebrate RNA virosphere. Nature, 2016, 540, 539-543.	13.7	1,328
249	The Expanding Virosphere. Cell Host and Microbe, 2016, 20, 279-280.	5.1	13
250	Human Adaptation of Ebola Virus during the West African Outbreak. Cell, 2016, 167, 1079-1087.e5.	13.5	180
251	Estimating evolutionary rates using time-structured data: a general comparison of phylogenetic methods. Bioinformatics, 2016, 32, 3375-3379.	1.8	38
252	Comparing the functions of equine and canine influenza H3N8 virus PA-X proteins: Suppression of reporter gene expression and modulation of global host gene expression. Virology, 2016, 496, 138-146.	1.1	18

#	Article	IF	Citations
253	Distinct Viral Lineages from Fish and Amphibians Reveal the Complex Evolutionary History of Hepadnaviruses. Journal of Virology, 2016, 90, 7920-7933.	1.5	71
254	Seqotron: a user-friendly sequence editor for Mac OS X. BMC Research Notes, 2016, 9, 106.	0.6	47
255	Genomic Analysis of the Emergence, Evolution, and Spread of Human Respiratory RNA Viruses. Annual Review of Genomics and Human Genetics, 2016, 17, 193-218.	2.5	38
256	Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States. Journal of Virology, 2016, 90, 1997-2007.	1.5	59
257	Virological factors that increase the transmissibility of emerging human viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4170-4175.	3.3	121
258	S1 gene-based phylogeny of infectious bronchitis virus: An attempt to harmonize virus classification. Infection, Genetics and Evolution, 2016, 39, 349-364.	1.0	296
259	Complexities of Estimating Evolutionary Rates in Viruses. Journal of Virology, 2016, 90, 2155-2155.	1.5	5
260	Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment. Journal of Virology, 2016, 90, 862-872.	1.5	42
261	Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science, 2016, 351, 81-84.	6.0	365
262	Quantifying influenza virus diversity and transmission in humans. Nature Genetics, 2016, 48, 195-200.	9.4	182
263	Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range. Journal of Virology, 2016, 90, 753-767.	1.5	65
264	Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses. Journal of Virology, 2016, 90, 659-669.	1.5	242
265	Substitution Model Adequacy and Assessing the Reliability of Estimates of Virus Evolutionary Rates and Time Scales. Molecular Biology and Evolution, 2016, 33, 255-267.	3.5	28
266	Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. Journal of General Virology, 2016, 97, 844-854.	1.3	45
267	A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene. PLoS Pathogens, 2016, 12, e1005883.	2.1	92
268	Transgenic Virus Resistance in Crop-Wild Cucurbita pepo Does Not Prevent Vertical Transmission of Zucchini yellow mosaic virus. Plant Disease, 2015, 99, 1616-1621.	0.7	6
269	Emerging Rabbit Hemorrhagic Disease Virus 2 (RHDVb), Australia. Emerging Infectious Diseases, 2015, 21, 2276-2278.	2.0	87
270	Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012. Emerging Infectious Diseases, 2015, 21, 1330-1338.	2.0	29

#	Article	IF	Citations
271	Reemergence and Autochthonous Transmission of Dengue Virus, Eastern China, 2014. Emerging Infectious Diseases, 2015, 21, 1670-1673.	2.0	14
272	Molecular Surveillance for Lymphoproliferative Disease Virus in Wild Turkeys (Meleagris gallopavo) from the Eastern United States. PLoS ONE, 2015, 10, e0122644.	1.1	20
273	Exploring Host–Pathogen Interactions through Biological Control. PLoS Pathogens, 2015, 11, e1004865.	2.1	37
274	Inter-Seasonal Influenza is Characterized by Extended Virus Transmission and Persistence. PLoS Pathogens, 2015, 11, e1004991.	2.1	25
275	Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. ELife, 2015, 4, .	2.8	629
276	The Performance of the Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data. Molecular Biology and Evolution, 2015, 32, 1895-1906.	3.5	172
277	Assessing the epidemiological effect of wolbachia for dengue control. Lancet Infectious Diseases, The, 2015, 15, 862-866.	4.6	73
278	Avian influenza virus exhibits distinct evolutionary dynamics in wild birds and poultry. BMC Evolutionary Biology, 2015, 15, 120.	3.2	28
279	Puzzling Origins of the Ebola Outbreak in the Democratic Republic of the Congo, 2014. Journal of Virology, 2015, 89, 10130-10132.	1.5	14
280	Intrahost Dynamics of Antiviral Resistance in Influenza A Virus Reflect Complex Patterns of Segment Linkage, Reassortment, and Natural Selection. MBio, 2015, 6, .	1.8	58
281	Influenza Virus Reservoirs and Intermediate Hosts: Dogs, Horses, and New Possibilities for Influenza Virus Exposure of Humans. Journal of Virology, 2015, 89, 2990-2994.	1.5	156
282	Viral biocontrol: grand experiments in disease emergence and evolution. Trends in Microbiology, 2015, 23, 83-90.	3.5	38
283	Full genomic analysis of new variant rabbit hemorrhagic disease virus revealed multiple recombination events. Journal of General Virology, 2015, 96, 1309-1319.	1.3	79
284	Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature, 2015, 522, 102-105.	13.7	201
285	Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell, 2015, 161, 1516-1526.	13.5	275
286	Evolution of Genome Size and Complexity in the Rhabdoviridae. PLoS Pathogens, 2015, 11, e1004664.	2.1	149
287	Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm. Viruses, 2015, 7, 1020-1061.	1.5	79
288	Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic. Nature, 2015, 524, 102-104.	13.7	96

#	Article	IF	CITATIONS
289	Emergence of a New Lineage of Dengue Virus Type 2 Identified in Travelers Entering Western Australia from Indonesia, 2010-2012. PLoS Neglected Tropical Diseases, 2015, 9, e0003442.	1.3	29
290	Evaluating the Adequacy of Molecular Clock Models Using Posterior Predictive Simulations. Molecular Biology and Evolution, 2015, 32, 2986-2995.	3.5	46
291	Fourteen types of co-circulating recombinant enterovirus were associated with hand, foot, and mouth disease in children from Wenzhou, China. Journal of Clinical Virology, 2015, 70, 29-38.	1.6	42
292	Comparative Phylodynamics of Rabbit Hemorrhagic Disease Virus in Australia and New Zealand. Journal of Virology, 2015, 89, 9548-9558.	1.5	32
293	Equine and Canine Influenza H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. Journal of Virology, 2015, 89, 6860-6873.	1.5	36
294	A generic assay for whole-genome amplification and deep sequencing of enterovirus A71. Journal of Virological Methods, 2015, 215-216, 30-36.	1.0	28
295	Declining transition/transversion ratios through time reveal limitations to the accuracy of nucleotide substitution models. BMC Evolutionary Biology, 2015, 15, 36.	3.2	73
296	The role of pathogen genomics in assessing disease transmission. BMJ, The, 2015, 350, h1314-h1314.	3.0	59
297	A cluster-randomised controlled trial to test the efficacy of facemasks in preventing respiratory viral infection among Hajj pilgrims. Journal of Epidemiology and Global Health, 2015, 5, 181.	1.1	29
298	The evolution and emergence of hantaviruses. Current Opinion in Virology, 2015, 10, 27-33.	2.6	73
299	Global migration of influenza A viruses in swine. Nature Communications, 2015, 6, 6696.	5.8	128
300	Cell Walls and the Convergent Evolution of the Viral Envelope. Microbiology and Molecular Biology Reviews, 2015, 79, 403-418.	2.9	29
301	Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam. Journal of Virology, 2015, 89, 8871-8879.	1.5	51
302	Dengue viruses cluster antigenically but not as discrete serotypes. Science, 2015, 349, 1338-1343.	6.0	195
303	Resolving the Origin of Rabbit Hemorrhagic Disease Virus: Insights from an Investigation of the Viral Stocks Released in Australia. Journal of Virology, 2015, 89, 12217-12220.	1.5	17
304	Ledantevirus: A Proposed New Genus in the Rhabdoviridae has a Strong Ecological Association with Bats. American Journal of Tropical Medicine and Hygiene, 2015, 92, 405-410.	0.6	27
305	Isolation and characterization of a novel arenavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology, 2015, 476, 37-42.	1.1	57
306	Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China. Virology, 2015, 474, 19-27.	1.1	116

#	Article	IF	CITATIONS
307	Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching. Virology, 2015, 474, 154-162.	1.1	23
308	Cyclic Avian Mass Mortality in the Northeastern United States Is Associated with a Novel Orthomyxovirus. Journal of Virology, 2015, 89, 1389-1403.	1.5	68
309	The contrasting phylodynamics of human influenza B viruses. ELife, 2015, 4, e05055.	2.8	166
310	Viral respiratory infections among Hajj pilgrims in 2013. Virologica Sinica, 2014, 29, 364-371.	1.2	59
311	Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology, 2014, 15, 539.	3.8	60
312	Seasonal Drivers of the Epidemiology of Arthropod-Borne Viruses in Australia. PLoS Neglected Tropical Diseases, 2014, 8, e3325.	1.3	37
313	Contact Heterogeneity, Rather Than Transmission Efficiency, Limits the Emergence and Spread of Canine Influenza Virus. PLoS Pathogens, 2014, 10, e1004455.	2.1	43
314	Multiyear Persistence of 2 Pandemic A/H1N1 Influenza Virus Lineages in West Africa. Journal of Infectious Diseases, 2014, 210, 121-125.	1.9	25
315	Increased virulence of rabbit haemorrhagic disease virus associated with genetic resistance in wild Australian rabbits (Oryctolagus cuniculus). Virology, 2014, 464-465, 415-423.	1.1	48
316	Koolpinyah and Yata viruses: Two newly recognised ephemeroviruses from tropical regions of Australia and Africa. Veterinary Microbiology, 2014, 174, 547-553.	0.8	10
317	Freezing viruses in time. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16643-16644.	3.3	7
318	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
319	An Allometric Relationship between the Genome Length and Virion Volume of Viruses. Journal of Virology, 2014, 88, 6403-6410.	1.5	62
320	Host-Specific Parvovirus Evolution in Nature Is Recapitulated by In Vitro Adaptation to Different Carnivore Species. PLoS Pathogens, 2014, 10, e1004475.	2.1	104
321	Gene duplication and phylogeography of North American members of the Hart Park serogroup of avian rhabdoviruses. Virology, 2014, 448, 284-292.	1.1	11
322	Evolution of Bovine Ephemeral Fever Virus in the Australian Episystem. Journal of Virology, 2014, 88, 1525-1535.	1.5	41
323	Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140732.	1.2	166
324	What is the time-scale of hantavirus evolution?. Infection, Genetics and Evolution, 2014, 25, 144-145.	1.0	15

#	Article	IF	Citations
325	A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6744-6749.	3.3	166
326	Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infectious Diseases, The, 2014, 14, 319-326.	4.6	358
327	Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV). Virology, 2014, 468-470, 104-112.	1.1	21
328	Molecular epidemiology of <scp>R</scp> abbit <scp>H</scp> aemorrhagic <scp>D</scp> isease <scp>V</scp> irus in <scp>A</scp> ustralia: when one became many. Molecular Ecology, 2014, 23, 408-420.	2.0	40
329	Second-Pandemic Strain of <i>Vibrio cholerae </i> from the Philadelphia Cholera Outbreak of 1849. New England Journal of Medicine, 2014, 370, 334-340.	13.9	134
330	Yersinia pestis and the three plague pandemics–Authors' reply. Lancet Infectious Diseases, The, 2014, 14, 919.	4.6	4
331	Analysis of viral (zucchini yellow mosaic virus) genetic diversity during systemic movement through a Cucurbita pepo vine. Virus Research, 2014, 191, 172-179.	1.1	20
332	Co-circulation of Hantaan, Kenkeme, and Khabarovsk Hantaviruses in Bolshoy Ussuriysky Island, China. Virus Research, 2014, 191, 51-58.	1.1	15
333	Novel non-parametric models to estimate evolutionary rates and divergence times from heterochronous sequence data. BMC Evolutionary Biology, 2014, 14, 163.	3.2	23
334	Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales. BMC Evolutionary Biology, 2014, 14, 167.	3.2	97
335	Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru. Journal of General Virology, 2014, 95, 787-792.	1.3	39
336	Introductions and Evolution of Human-Origin Seasonal Influenza A Viruses in Multinational Swine Populations. Journal of Virology, 2014, 88, 10110-10119.	1.5	88
337	Emergence of a Highly Pathogenic Avian Influenza Virus from a Low-Pathogenic Progenitor. Journal of Virology, 2014, 88, 4375-4388.	1.5	124
338	Avian oncogenesis induced by lymphoproliferative disease virus: A neglected or emerging retroviral pathogen?. Virology, 2014, 450-451, 2-12.	1.1	30
339	Biodiversity and evolution of Imjin virus and Thottapalayam virus in Crocidurinae shrews in Zhejiang Province, China. Virus Research, 2014, 189, 114-120.	1.1	16
340	The emergence and evolution of the novel epidemic norovirus GII.4 variant Sydney 2012. Virology, 2014, 450-451, 106-113.	1.1	111
341	Co-Circulation of Multiple Hemorrhagic Fever Diseases with Distinct Clinical Characteristics in Dandong, China. PLoS ONE, 2014, 9, e89896.	1.1	9
342	Identification of diverse full-length endogenous betaretroviruses in megabats and microbats. Retrovirology, 2013, 10, 35.	0.9	45

#	Article	IF	CITATIONS
343	Malpais spring virus is a new species in the genus vesiculovirus. Virology Journal, 2013, 10, 69.	1.4	11
344	Ancient invasion of an extinct gammaretrovirus in cetaceans. Virology, 2013, 441, 66-69.	1.1	5
345	Cross-species transmission of honey bee viruses in associated arthropods. Virus Research, 2013, 176, 232-240.	1.1	120
346	Zucchini yellow mosaic virus (ZYMV, Potyvirus): Vertical transmission, seed infection and cryptic infections. Virus Research, 2013, 176, 259-264.	1.1	49
347	Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology, 2013, 444, 80-89.	1.1	26
348	Gene Duplication Is Infrequent in the Recent Evolutionary History of RNA Viruses. Molecular Biology and Evolution, 2013, 30, 1263-1269.	3. 5	45
349	The Effect of Gene Overlapping on the Rate of RNA Virus Evolution. Molecular Biology and Evolution, 2013, 30, 1916-1928.	3.5	47
350	The spread of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in North America: A phylogeographic approach. Virology, 2013, 447, 146-154.	1.1	45
351	Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea. Journal of General Virology, 2013, 94, 2609-2615.	1.3	28
352	Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread. Journal of Virology, 2013, 87, 12900-12915.	1.5	32
353	Differing Epidemiological Dynamics of Influenza B Virus Lineages in Guangzhou, Southern China, 2009-2010. Journal of Virology, 2013, 87, 12447-12456.	1.5	57
354	Frequent Cross-Species Transmission of Parvoviruses among Diverse Carnivore Hosts. Journal of Virology, 2013, 87, 2342-2347.	1.5	121
355	What can we predict about viral evolution and emergence?. Current Opinion in Virology, 2013, 3, 180-184.	2.6	47
356	The evolutionary dynamics of influenza A virus adaptation to mammalian hosts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120382.	1.8	40
357	Systematic phylogenetic analysis of influenza A virus reveals many novel mosaic genome segments. Infection, Genetics and Evolution, 2013, 18, 367-378.	1.0	21
358	Discovery of diverse polyomaviruses in bats and the evolutionary history of the Polyomaviridae. Journal of General Virology, 2013, 94, 738-748.	1.3	56
359	The introduction of fox rabies into Italy (2008–2011) was due to two viral genetic groups with distinct phylogeographic patterns. Infection, Genetics and Evolution, 2013, 17, 202-209.	1.0	16
360	Evolution of Equine Influenza Virus in Vaccinated Horses. Journal of Virology, 2013, 87, 4768-4771.	1.5	34

#	Article	IF	CITATIONS
361	Dengue Virus in Sub-tropical Northern and Central Viet Nam: Population Immunity and Climate Shape Patterns of Viral Invasion and Maintenance. PLoS Neglected Tropical Diseases, 2013, 7, e2581.	1.3	34
362	The Role of Selection in Shaping Diversity of Natural M. tuberculosis Populations. PLoS Pathogens, 2013, 9, e1003543.	2.1	138
363	Random Codon Re-encoding Induces Stable Reduction of Replicative Fitness of Chikungunya Virus in Primate and Mosquito Cells. PLoS Pathogens, 2013, 9, e1003172.	2.1	63
364	Phylodynamic Analysis of the Emergence and Epidemiological Impact of Transmissible Defective Dengue Viruses. PLoS Pathogens, 2013, 9, e1003193.	2.1	47
365	Frequent In-Migration and Highly Focal Transmission of Dengue Viruses among Children in Kamphaeng Phet, Thailand. PLoS Neglected Tropical Diseases, 2013, 7, e1990.	1.3	31
366	Ongoing Spillover of Hantaan and Gou Hantaviruses from Rodents Is Associated with Hemorrhagic Fever with Renal Syndrome (HFRS) in China. PLoS Neglected Tropical Diseases, 2013, 7, e2484.	1.3	13
367	New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathogens, 2013, 9, e1003657.	2.1	1,050
368	Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120199.	1.8	38
369	Recombination Is Associated with an Outbreak of Novel Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Viruses in China. Journal of Virology, 2013, 87, 10904-10907.	1.5	75
370	Sequence Analysis of <i>In Vivo</i> Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus. Journal of Virology, 2013, 87, 8064-8074.	1.5	144
371	Epidemiological Dynamics and Phylogeography of Influenza Virus in Southern China. Journal of Infectious Diseases, 2013, 207, 106-114.	1.9	41
372	Host and viral features of human dengue cases shape the population of infected and infectious <i>Aedes aegypti</i> mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9072-9077.	3.3	220
373	Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8194-8199.	3.3	251
374	Comparative Analysis of the Complete Genome Sequence of the California MSW Strain of Myxoma Virus Reveals Potential Host Adaptations. Journal of Virology, 2013, 87, 12080-12089.	1.5	21
375	Inferring the inter-host transmission of influenza A virus using patterns of intra-host genetic variation. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122173.	1.2	45
376	Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus. Virology Journal, 2013, 10, 304.	1.4	47
377	Phylogeny and Origins of Hantaviruses Harbored by Bats, Insectivores, and Rodents. PLoS Pathogens, 2013, 9, e1003159.	2.1	240
378	Evolutionary History and Attenuation of Myxoma Virus on Two Continents. PLoS Pathogens, 2012, 8, e1002950.	2.1	91

#	Article	IF	CITATIONS
379	Transmission of Equine Influenza Virus during an Outbreak Is Characterized by Frequent Mixed Infections and Loose Transmission Bottlenecks. PLoS Pathogens, 2012, 8, e1003081.	2.1	57
380	Evolution of an Eurasian Avian-like Influenza Virus in NaÃ-ve and Vaccinated Pigs. PLoS Pathogens, 2012, 8, e1002730.	2.1	79
381	Presence of Oseltamivir-Resistant Pandemic A/H1N1 Minor Variants Before Drug Therapy With Subsequent Selection and Transmission. Journal of Infectious Diseases, 2012, 206, 1504-1511.	1.9	70
382	Global transmission of influenza viruses from humans to swine. Journal of General Virology, 2012, 93, 2195-2203.	1.3	154
383	Role of Multiple Hosts in the Cross-Species Transmission and Emergence of a Pandemic Parvovirus. Journal of Virology, 2012, 86, 865-872.	1.5	85
384	Endogenous Hepadnaviruses in the Genome of the Budgerigar (Melopsittacus undulatus) and the Evolution of Avian Hepadnaviruses. Journal of Virology, 2012, 86, 7688-7691.	1.5	25
385	Level of Gene Expression Is a Major Determinant of Protein Evolution in the Viral Order Mononegavirales. Journal of Virology, 2012, 86, 5253-5263.	1.5	18
386	Evidence for an endogenous papillomavirus-like element in the platypus genome. Journal of General Virology, 2012, 93, 1362-1366.	1.3	5
387	High-Resolution Analysis of Intrahost Genetic Diversity in Dengue Virus Serotype 1 Infection Identifies Mixed Infections. Journal of Virology, 2012, 86, 835-843.	1.5	52
388	The recombinant origin of emerging human norovirus GII.4/2008: intra-genotypic exchange of the capsid P2 domain. Journal of General Virology, 2012, 93, 817-822.	1.3	24
389	Evolutionary Conservation of the PA-X Open Reading Frame in Segment 3 of Influenza A Virus. Journal of Virology, 2012, 86, 12411-12413.	1.5	104
390	Endogenous Lentiviruses in the Ferret Genome. Journal of Virology, 2012, 86, 3383-3385.	1.5	38
391	The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus. Journal of Virology, 2012, 86, 1514-1521.	1.5	49
392	Molecular evolution of the insect-specific flaviviruses. Journal of General Virology, 2012, 93, 223-234.	1.3	141
393	Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nature Genetics, 2012, 44, 1056-1059.	9.4	278
394	Frequent in-migration and highly focal transmission of dengue viruses among children in Kamphaeng Phet, Thailand. International Journal of Infectious Diseases, 2012, 16, e90-e91.	1.5	1
395	Deep sequencing reveals persistence of intra- and inter-host genetic diversity in natural and greenhouse populations of zucchini yellow mosaic virus. Journal of General Virology, 2012, 93, 1831-1840.	1.3	32
396	Evolution of Novel Reassortant A/H3N2 Influenza Viruses in North American Swine and Humans, 2009–2011. Journal of Virology, 2012, 86, 8872-8878.	1.5	108

#	Article	IF	Citations
397	No evidence for intra-segment recombination of 2009 H1N1 influenza virus in swine. Gene, 2012, 494, 242-245.	1.0	16
398	Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. Journal of General Virology, 2012, 93, 2037-2045.	1.3	48
399	Genomic reassortment of influenza A virus in North American swine, 1998–2011. Journal of General Virology, 2012, 93, 2584-2589.	1.3	40
400	PHYRN: A Robust Method for Phylogenetic Analysis of Highly Divergent Sequences. PLoS ONE, 2012, 7, e34261.	1.1	15
401	Co-Circulation and Persistence of Genetically Distinct Saffold Viruses, Denmark. Emerging Infectious Diseases, 2012, 18, 1694-1696.	2.0	6
402	Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecology Letters, 2012, 15, 24-33.	3.0	86
403	Molecular epidemiology and evolutionary dynamics of betanodavirus in southern Europe. Infection, Genetics and Evolution, 2012, 12, 63-70.	1.0	122
404	Segmental configuration and putative origin of the reassortant orbivirus, epizootic hemorrhagic disease virus serotype 6, strain Indiana. Virology, 2012, 424, 67-75.	1.1	25
405	Endogenous RNA viruses of plants in insect genomes. Virology, 2012, 427, 77-79.	1.1	47
406	Phylodynamics of H5N1 avian influenza virus in Indonesia. Molecular Ecology, 2012, 21, 3062-3077.	2.0	33
407	What Does Virus Evolution Tell Us about Virus Origins?. Journal of Virology, 2011, 85, 5247-5251.	1.5	119
408	Experimental Verification of Seed Transmission of <i>Zucchini yellow mosaic virus</i> . Plant Disease, 2011, 95, 751-754.	0.7	69
409	Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nature Reviews Microbiology, 2011, 9, 532-541.	13.6	274
410	The Evolution of Endogenous Viral Elements. Cell Host and Microbe, 2011, 10, 368-377.	5.1	209
411	Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine, 2011, 29, 9368-9375.	1.7	135
412	Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus. Virus Research, 2011, 155, 389-396.	1.1	13
413	Why do RNA viruses recombine?. Nature Reviews Microbiology, 2011, 9, 617-626.	13.6	547
414	Spatial but not temporal co-divergence of a virus and its mammalian host. Molecular Ecology, 2011, 20, 4109-4122.	2.0	26

#	Article	IF	CITATIONS
415	The Genomic Rate of Molecular Adaptation of the Human Influenza A Virus. Molecular Biology and Evolution, 2011, 28, 2443-2451.	3.5	150
416	Deep Sequencing Reveals Mixed Infection with 2009 Pandemic Influenza A (H1N1) Virus Strains and the Emergence of Oseltamivir Resistance. Journal of Infectious Diseases, 2011, 203, 168-174.	1.9	113
417	The Emergence of Rotavirus G12 and the Prevalence of Enteric Viruses in Hospitalized Pediatric Diarrheal Patients in Southern Vietnam. American Journal of Tropical Medicine and Hygiene, 2011, 85, 768-775.	0.6	24
418	Phylogeography of the Spring and Fall Waves of the $\rm H1N1/09$ Pandemic Influenza Virus in the United States. Journal of Virology, 2011, 85, 828-834.	1.5	54
419	Phylogeography and Evolutionary History of Reassortant H9N2 Viruses with Potential Human Health Implications. Journal of Virology, 2011, 85, 8413-8421.	1.5	139
420	Genome-Scale Evolution and Phylodynamics of Equine H3N8 Influenza A Virus. Journal of Virology, 2011, 85, 5312-5322.	1.5	90
421	Extensive Geographical Mixing of 2009 Human H1N1 Influenza A Virus in a Single University Community. Journal of Virology, 2011, 85, 6923-6929.	1.5	43
422	Reassortment Events among Swine Influenza A Viruses in China: Implications for the Origin of the 2009 Influenza Pandemic. Journal of Virology, 2011, 85, 10279-10285.	1.5	57
423	Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19359-19364.	3.3	146
424	Persistence of Multiple Genetic Lineages within Intrahost Populations of Ross River Virus. Journal of Virology, 2011, 85, 5674-5678.	1.5	14
425	Family level phylogenies reveal modes of macroevolution in RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 238-243.	3.3	87
426	Genome-Scale Phylogenetic Analyses of Chikungunya Virus Reveal Independent Emergences of Recent Epidemics and Various Evolutionary Rates. Journal of Virology, 2011, 85, 5706-5706.	1.5	1
427	Plague's progress. Nature, 2011, 478, 465-466.	13.7	4
428	Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine. PLoS Pathogens, 2011, 7, e1002077.	2.1	116
429	Endemic Dengue Associated with the Co-Circulation of Multiple Viral Lineages and Localized Density-Dependent Transmission. PLoS Pathogens, 2011, 7, e1002064.	2.1	86
430	Global Rinderpest Eradication: Lessons Learned and Why Humans Should Celebrate Too. Journal of Infectious Diseases, 2011, 204, 502-505.	1.9	65
431	Hitchhiking and the Population Genetic Structure of Avian Influenza Virus. Journal of Molecular Evolution, 2010, 70, 98-105.	0.8	39
432	The Evolutionary Dynamics of Bluetongue Virus. Journal of Molecular Evolution, 2010, 70, 583-592.	0.8	59

#	Article	IF	CITATIONS
433	Phylogenetic Analysis Reveals Rapid Evolutionary Dynamics in the Plant RNA Virus Genus Tobamovirus. Journal of Molecular Evolution, 2010, 71, 298-307.	0.8	49
434	Evolution of dengue virus in Mexico is characterized by frequent lineage replacement. Archives of Virology, 2010, 155, 1401-1412.	0.9	55
435	Does hepatitis C virus really form quasispecies?. Infection, Genetics and Evolution, 2010, 10, 431-432.	1.0	7
436	The gorilla connection. Nature, 2010, 467, 404-405.	13.7	8
437	Guidelines for Identifying Homologous Recombination Events in Influenza A Virus. PLoS ONE, 2010, 5, e10434.	1.1	72
438	Social Networks Shape the Transmission Dynamics of Hepatitis C Virus. PLoS ONE, 2010, 5, e11170.	1.1	48
439	RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species. PLoS ONE, 2010, 5, e14357.	1.1	333
440	Long-Term Evolution of the <i>Luteoviridae </i> : Time Scale and Mode of Virus Speciation. Journal of Virology, 2010, 84, 6177-6187.	1.5	118
441	Intra- and Interhost Evolutionary Dynamics of Equine Influenza Virus. Journal of Virology, 2010, 84, 6943-6954.	1.5	97
442	Evolution and Phylogeography of the Nonpathogenic Calicivirus RCV-A1 in Wild Rabbits in Australia. Journal of Virology, 2010, 84, 12397-12404.	1.5	34
443	Microevolution of Canine Influenza Virus in Shelters and Its Molecular Epidemiology in the United States. Journal of Virology, 2010, 84, 12636-12645.	1.5	46
444	Evolutionary Dynamics of Multiple Sublineages of H5N1 Influenza Viruses in Nigeria from 2006 to 2008. Journal of Virology, 2010, 84, 3239-3247.	1.5	35
445	Sylvatic Dengue Viruses Share the Pathogenic Potential of Urban/Endemic Dengue Viruses. Journal of Virology, 2010, 84, 3726-3728.	1.5	24
446	Yellow Fever Virus Exhibits Slower Evolutionary Dynamics than Dengue Virus. Journal of Virology, 2010, 84, 765-772.	1.5	69
447	Genomics and evolution of Aedes-borne flaviviruses. Journal of General Virology, 2010, 91, 87-94.	1.3	74
448	Helping the Resistance. Science, 2010, 328, 1243-1244.	6.0	13
449	Intrahost Evolutionary Dynamics of Canine Influenza Virus in Nail ve and Partially Immune Dogs. Journal of Virology, 2010, 84, 5329-5335.	1.5	61
450	Molecular evolutionary dynamics of Ross River virus and implications for vaccine efficacy. Journal of General Virology, 2010, 91, 182-188.	1.3	24

#	Article	IF	CITATIONS
451	The comparative genomics of viral emergence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1742-1746.	3.3	68
452	Trends in Patterns of Dengue Transmission over 4 Years in a Pediatric Cohort Study in Nicaragua. Journal of Infectious Diseases, 2010, 201, 5-14.	1.9	158
453	Using Time-Structured Data to Estimate Evolutionary Rates of Double-Stranded DNA Viruses. Molecular Biology and Evolution, 2010, 27, 2038-2051.	3.5	279
454	Application of Broad-Spectrum Resequencing Microarray for Genotyping Rhabdoviruses. Journal of Virology, 2010, 84, 9557-9574.	1.5	43
455	Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia. PLoS Neglected Tropical Diseases, 2010, 4, e757.	1.3	131
456	Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. PLoS Pathogens, 2010, 6, e1001166.	2.1	124
457	Phylogeography of Recently Emerged DENV-2 in Southern Viet Nam. PLoS Neglected Tropical Diseases, 2010, 4, e766.	1.3	53
458	Unseasonal Transmission of H3N2 Influenza A Virus During the Swine-Origin H1N1 Pandemic. Journal of Virology, 2010, 84, 5715-5718.	1.5	15
459	Genome-Scale Phylogenetic Analyses of Chikungunya Virus Reveal Independent Emergences of Recent Epidemics and Various Evolutionary Rates. Journal of Virology, 2010, 84, 6497-6504.	1.5	332
460	The RNA Virus Quasispecies: Fact or Fiction?. Journal of Molecular Biology, 2010, 400, 271-273.	2.0	50
461	Epidemic Dynamics Revealed in Dengue Evolution. Molecular Biology and Evolution, 2010, 27, 811-818.	3.5	92
462	Insights into the Evolutionary History of an Emerging Livestock Pathogen: Porcine Circovirus 2. Journal of Virology, 2009, 83, 12813-12821.	1.5	208
463	Mixed Infection and the Genesis of Influenza Virus Diversity. Journal of Virology, 2009, 83, 8832-8841.	1.5	95
464	Origin and Phylodynamics of Rabbit Hemorrhagic Disease Virus. Journal of Virology, 2009, 83, 12129-12138.	1.5	76
465	Genomic Epidemiology of a Dengue Virus Epidemic in Urban Singapore. Journal of Virology, 2009, 83, 4163-4173.	1.5	89
466	Different Evolutionary Trajectories of European Avian-Like and Classical Swine H1N1 Influenza A Viruses. Journal of Virology, 2009, 83, 5485-5494.	1.5	114
467	Diversity and Origin of Dengue Virus Serotypes 1, 2, and 3, Bhutan. Emerging Infectious Diseases, 2009, 15, 1630-1632.	2.0	38
468	Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus. PLoS Pathogens, 2009, 5, e1000254.	2.1	121

#	Article	IF	Citations
469	Dengue Virus Serotype 2 from a Sylvatic Lineage Isolated from a Patient with Dengue Hemorrhagic Fever. PLoS Neglected Tropical Diseases, 2009, 3, e423.	1.3	61
470	Discovering the Phylodynamics of RNA Viruses. PLoS Computational Biology, 2009, 5, e1000505.	1.5	100
471	Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. Journal of General Virology, 2009, 90, 1539-1547.	1.3	171
472	Invited Commentary: Evaluating Vaccination Programs Using Genetic Sequence Data. American Journal of Epidemiology, 2009, 170, 1464-1466.	1.6	5
473	Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds. Virology, 2009, 383, 156-161.	1.1	58
474	The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology, 2009, 388, 270-278.	1.1	96
475	Gene flow and competitive exclusion of avian influenza A virus in natural reservoir hosts. Virology, 2009, 390, 289-297.	1.1	108
476	Importation and co-circulation of multiple serotypes of dengue virus in Sarawak, Malaysia. Virus Research, 2009, 143, 1-5.	1.1	31
477	The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 353-372.	3.8	157
478	Evolutionary history and dynamics of dog rabies virus in western and central Africa. Journal of General Virology, 2009, 90, 783-791.	1.3	95
479	Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. Journal of General Virology, 2009, 90, 2669-2678.	1.3	121
480	RNA virus genomics: a world of possibilities. Journal of Clinical Investigation, 2009, 119, 2488-2495.	3.9	68
481	The early molecular epidemiology of the swine-origin A/H1N1 human influenza pandemic. PLOS Currents, 2009, 1, RRN1003.	1.4	83
482	The early diversification of influenza A/H1N1pdm. PLOS Currents, 2009, 1, RRN1126.	1.4	121
483	The Evolutionary and Epidemiological Dynamics of the Paramyxoviridae. Journal of Molecular Evolution, 2008, 66, 98-106.	0.8	97
484	Bayesian Coalescent Analysis Reveals a High Rate of Molecular Evolution in GB Virus C. Journal of Molecular Evolution, 2008, 66, 292-297.	0.8	10
485	The Evolutionary Dynamics of Human Influenza B Virus. Journal of Molecular Evolution, 2008, 66, 655-663.	0.8	194
486	The role of alternative genetic codes in viral evolution and emergence. Journal of Theoretical Biology, 2008, 254, 128-134.	0.8	49

#	Article	IF	CITATIONS
487	Hantavirus Evolution in Relation to Its Rodent and Insectivore Hosts: No Evidence for Codivergence. Molecular Biology and Evolution, 2008, 26, 143-153.	3.5	209
488	The genomic and epidemiological dynamics of human influenza A virus. Nature, 2008, 453, 615-619.	13.7	824
489	Rates of evolutionary change in viruses: patterns and determinants. Nature Reviews Genetics, 2008, 9, 267-276.	7.7	1,239
490	Evolutionary History and Phylogeography of Human Viruses. Annual Review of Microbiology, 2008, 62, 307-328.	2.9	166
491	The Evolution of Viral Emergence. Novartis Foundation Symposium, 2008, , 17-31.	1.2	0
492	Comparative Studies of RNA Virus Evolution. , 2008, , 119-134.		10
493	Rapid evolutionary dynamics of zucchini yellow mosaic virus. Journal of General Virology, 2008, 89, 1081-1085.	1.3	53
494	Evolutionary dynamics of human and avian metapneumoviruses. Journal of General Virology, 2008, 89, 2933-2942.	1.3	89
495	Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiology and Molecular Biology Reviews, 2008, 72, 457-470.	2.9	648
496	Phylogenetic Evidence for Rapid Rates of Molecular Evolution in the Single-Stranded DNA Begomovirus <i>Tomato Yellow Leaf Curl Virus</i> . Journal of Virology, 2008, 82, 957-965.	1.5	251
497	Phylogenetic analysis reveals the emergence, evolution and dispersal of carnivore parvoviruses. Journal of General Virology, 2008, 89, 2280-2289.	1.3	137
498	Genetic Analysis of Israel Acute Paralysis Virus: Distinct Clusters Are Circulating in the United States. Journal of Virology, 2008, 82, 6209-6217.	1.5	88
499	Phylogenetic profiles reveal evolutionary relationships within the "twilight zone―of sequence similarity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13474-13479.	3.3	34
500	Homologous Recombination Is Very Rare or Absent in Human Influenza A Virus. Journal of Virology, 2008, 82, 4807-4811.	1.5	111
501	Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918. PLoS Pathogens, 2008, 4, e1000012.	2.1	243
502	Boosting Virology in Brazil. PLoS Biology, 2008, 6, e57.	2.6	3
503	The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds. PLoS Pathogens, 2008, 4, e1000076.	2.1	334
504	Molecular Epidemiology of A/H3N2 and A/H1N1 Influenza Virus during a Single Epidemic Season in the United States. PLoS Pathogens, 2008, 4, e1000133.	2.1	97

#	Article	IF	CITATIONS
505	High Rates of Molecular Evolution in Hantaviruses. Molecular Biology and Evolution, 2008, 25, 1488-1492.	3.5	117
506	Microevolution of Dengue Viruses Circulating among Primary School Children in Kamphaeng Phet, Thailand. Journal of Virology, 2008, 82, 5494-5500.	1.5	54
507	Within-Host Genetic Diversity of Endemic and Emerging Parvoviruses of Dogs and Cats. Journal of Virology, 2008, 82, 11096-11105.	1.5	57
508	Prior Evidence of Putative Novel <i>Rhinovirus</i> Species, Australia. Emerging Infectious Diseases, 2008, 14, 1824-1825.	2.0	0
509	The origin and phylogeography of dog rabies virus. Journal of General Virology, 2008, 89, 2673-2681.	1.3	206
510	The Evolutionary Biology of Dengue Virus. Novartis Foundation Symposium, 2008, 277, 177-192.	1.2	15
511	Global Distribution of Novel Rhinovirus Genotype. Emerging Infectious Diseases, 2008, 14, 944-947.	2.0	97
512	Genomic Diversity and Evolution of the Lyssaviruses. PLoS ONE, 2008, 3, e2057.	1.1	146
513	Comparative analysis reveals frequent recombination in the parvoviruses. Journal of General Virology, 2007, 88, 3294-3301.	1.3	92
514	Ancient lentiviruses leave their mark. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6095-6096.	3.3	2
515	Multiple Introductions of the Old World Begomovirus Tomato yellow leaf curl virus into the New World. Applied and Environmental Microbiology, 2007, 73, 7114-7117.	1.4	60
516	Polymorphisms in Nef Associated with Different Clinical Outcomes in HIV Type 1 Subtype C-Infected Children. AIDS Research and Human Retroviruses, 2007, 23, 204-215.	0.5	21
517	Viral Evolution in the Genomic Age. PLoS Biology, 2007, 5, e278.	2.6	33
518	When HIV spread afar. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18351-18352.	3.3	7
519	Selection for Robustness in Mutagenized RNA Viruses. PLoS Genetics, 2007, 3, e93.	1.5	149
520	Phylogenetic Analysis Reveals the Global Migration of Seasonal Influenza A Viruses. PLoS Pathogens, 2007, 3, e131.	2.1	136
521	Out of Africa: A Molecular Perspective on the Introduction of Yellow Fever Virus into the Americas. PLoS Pathogens, 2007, 3, e75.	2.1	264
522	Phylogenetic Evidence for Deleterious Mutation Load in RNA Viruses and Its Contribution to Viral Evolution. Molecular Biology and Evolution, 2007, 24, 845-852.	3.5	133

#	Article	IF	CITATIONS
523	Extremely Rapid Spread of Human Immunodeficiency Virus Type 1 BF Recombinants in Argentina. Journal of Virology, 2007, 81, 427-429.	1.5	36
524	Declining Growth Rate of West Nile Virus in North America. Journal of Virology, 2007, 81, 2531-2534.	1.5	73
525	Evolutionary Processes among Sylvatic Dengue Type 2 Viruses. Journal of Virology, 2007, 81, 9591-9595.	1.5	64
526	A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder. Science, 2007, 318, 283-287.	6.0	1,481
527	The Genesis and Spread of Reassortment Human Influenza A/H3N2 Viruses Conferring Adamantane Resistance. Molecular Biology and Evolution, 2007, 24, 1811-1820.	3.5	174
528	DengueInfo: A web portal to dengue information resources. Infection, Genetics and Evolution, 2007, 7, 540-541.	1.0	12
529	A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nature Genetics, 2007, 39, 1162-1166.	9.4	296
530	The evolution of epidemic influenza. Nature Reviews Genetics, 2007, 8, 196-205.	7.7	462
531	Genetic characterization of tick-borne flaviviruses: New insights into evolution, pathogenetic determinants and taxonomy. Virology, 2007, 361, 80-92.	1.1	229
532	The "pressure pan―evolution of human erythrovirus B19 in the Amazon, Brazil. Virology, 2007, 369, 281-287.	1.1	12
533	The complete nucleotide sequence of a New World simian foamy virus. Virology, 2007, 369, 191-197.	1.1	31
534	Inferring the Timescale of Dengue Virus Evolution Under Realistic Models of DNA Substitution. Journal of Molecular Evolution, 2007, 64, 656-661.	0.8	20
535	Bayesian Estimates of the Evolutionary Rate and Age of Hepatitis B Virus. Journal of Molecular Evolution, 2007, 65, 197-205.	0.8	106
536	The evolutionary dynamics of canid and mongoose rabies virus in southern Africa. Archives of Virology, 2007, 152, 1251-1258.	0.9	40
537	Sequence analysis of the equid herpesvirus 2 chemokine receptor homologues E1, ORF74 and E6 demonstrates high sequence divergence between field isolates. Journal of General Virology, 2007, 88, 2450-2462.	1.3	27
538	Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient. Journal of General Virology, 2007, 88, 3334-3340.	1.3	44
539	Demographic Histories of ERV-K in Humans, Chimpanzees and Rhesus Monkeys. PLoS ONE, 2007, 2, e1026.	1.1	15
540	Clinical Intervention and Molecular Characteristics of a Dengue Hemorrhagic Fever Outbreak in Timor Leste, 2005. American Journal of Tropical Medicine and Hygiene, 2007, 77, 534-537.	0.6	14

#	Article	IF	CITATIONS
541	Clinical intervention and molecular characteristics of a dengue hemorrhagic fever outbreak in Timor Leste, 2005. American Journal of Tropical Medicine and Hygiene, 2007, 77, 534-7.	0.6	8
542	Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. Journal of General Virology, 2006, 87, 735-748.	1.3	169
543	Long-Term Transmission of Defective RNA Viruses in Humans and Aedes Mosquitoes. Science, 2006, 311, 236-238.	6.0	216
544	A Phylogenetic Method for Detecting Positive Epistasis in Gene Sequences and Its Application to RNA Virus Evolution. Molecular Biology and Evolution, 2006, 23, 1724-1730.	3 . 5	46
545	Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biology Direct, 2006, 1, 34.	1.9	176
546	Phylogenetic Evidence for the Rapid Evolution of Human B19 Erythrovirus. Journal of Virology, 2006, 80, 3666-3669.	1.5	120
547	Host Species Barriers to Influenza Virus Infections. Science, 2006, 312, 394-397.	6.0	413
548	Future issues in RNA virus evolution. Future Virology, 2006, 1, 243-249.	0.9	2
549	The evolutionary history and dynamics of bat rabies virus. Infection, Genetics and Evolution, 2006, 6, 464-473.	1.0	68
550	A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Archives of Virology, 2006, 151, 309-325.	0.9	156
551	A phylogenetic survey of recombination frequency in plant RNA viruses. Archives of Virology, 2006, 151, 933-946.	0.9	212
552	Evolutionary Basis of Codon Usage and Nucleotide Composition Bias in Vertebrate DNA Viruses. Journal of Molecular Evolution, 2006, 62, 551-563.	0.8	256
553	Population genetic estimation of the loss of genetic diversity during horizontal transmission of HIV-1. BMC Evolutionary Biology, 2006, 6, 28.	3.2	67
554	The evolution of viral emergence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4803-4804.	3.3	18
555	Comment on "Large-Scale Sequence Analysis of Avian Influenza Isolates". Science, 2006, 313, 1573b-1573b.	6.0	27
556	Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus. PLoS Pathogens, 2006, 2, e125.	2.1	173
557	Evolution of the Human Immunodeficiency Virus Envelope Gene Is Dominated by Purifying Selection. Genetics, 2006, 174, 1441-1453.	1.2	64
558	JC Virus Evolution and Its Association with Human Populations. Journal of Virology, 2006, 80, 9928-9933.	1.5	105

#	Article	IF	CITATIONS
559	Comparative analysis reveals no consistent association between the secondary structure of the 3′-untranslated region of dengue viruses and disease syndrome. Journal of General Virology, 2006, 87, 2595-2603.	1.3	23
560	Avian Influenza Virus Exhibits Rapid Evolutionary Dynamics. Molecular Biology and Evolution, 2006, 23, 2336-2341.	3.5	203
561	Structure and age of genetic diversity of dengue virus type 2 in Thailand. Journal of General Virology, 2006, 87, 873-883.	1.3	63
562	Passive Sexual Transmission of Human Immunodeficiency Virus Type 1 Variants and Adaptation in New Hosts. Journal of Virology, 2006, 80, 7226-7234.	1.5	23
563	Molecular evolution of dengue 2 virus in Puerto Rico: positive selection in the viral envelope accompanies clade reintroduction. Journal of General Virology, 2006, 87, 885-893.	1.3	105
564	Ngoye virus: a novel evolutionary lineage within the genus Flavivirus. Journal of General Virology, 2006, 87, 3273-3277.	1.3	27
565	Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14234-14239.	3.3	246
566	Comparative population dynamics of HIV-1 subtypes B and C: subtype-specific differences in patterns of epidemic growth. Infection, Genetics and Evolution, 2005, 5, 199-208.	1.0	68
567	The hepatitis C virus epidemic among injecting drug users. Infection, Genetics and Evolution, 2005, 5, 131-139.	1.0	143
568	On being the right size. Nature Genetics, 2005, 37, 923-924.	9.4	6
569	Ancient co-speciation of simian foamy viruses and primates. Nature, 2005, 434, 376-380.	13.7	248
570	Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection. Virology, 2005, 336, 163-172.	1,1	74
571	Dengue Virus Type 3, Cuba, 2000–2002. Emerging Infectious Diseases, 2005, 11, 773-774.	2.0	37
572	Invasion and Maintenance of Dengue Virus Type 2 and Type 4 in the Americas. Journal of Virology, 2005, 79, 14680-14687.	1.5	116
573	Unique Acquisition of Cytotoxic T-Lymphocyte Escape Mutants in Infant Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 2005, 79, 12100-12105.	1.5	38
574	Phylogeography, Population Dynamics, and Molecular Evolution of European Bat Lyssaviruses. Journal of Virology, 2005, 79, 10487-10497.	1.5	107
575	Intrapatient Escape in the A*0201-Restricted Epitope SLYNTVATL Drives Evolution of Human Immunodeficiency Virus Type 1 at the Population Level. Journal of Virology, 2005, 79, 9363-9366.	1.5	12
576	Clade Replacements in Dengue Virus Serotypes 1 and 3 Are Associated with Changing Serotype Prevalence. Journal of Virology, 2005, 79, 15123-15130.	1.5	183

#	Article	IF	Citations
577	Mitochondrial Markers for Molecular Identification of <i>Aedes</i> Mosquitoes (Diptera: Culicidae) Involved in Transmission of Arboviral Disease in West Africa. Journal of Medical Entomology, 2005, 42, 19-28.	0.9	29
578	Mitochondrial Markers for Molecular Identification of <i>Aedes </i> Mosquitoes (Diptera: Culicidae) Involved in Transmission of Arboviral Disease in West Africa. Journal of Medical Entomology, 2005, 42, 19-28.	0.9	46
579	Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. Journal of General Virology, 2005, 86, 2849-2858.	1.3	138
580	High rate of viral evolution associated with the emergence of carnivore parvovirus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 379-384.	3.3	471
581	Sexual Transmission of Single Human Immunodeficiency Virus Type 1 Virions Encoding Highly Polymorphic Multisite Cytotoxic T-Lymphocyte Escape Variants. Journal of Virology, 2005, 79, 13953-13962.	1.5	26
582	Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses. PLoS Biology, 2005, 3, e300.	2.6	340
583	Heading Off an Influenza Pandemic. Science, 2005, 309, 989-989.	6.0	19
584	Evolutionary genetics and the emergence of SARS Coronavirus. , 2005, , 16-23.		1
585	Evolutionary genetics and emergence of RNA virus diseases. , 2004, , 391-410.		0
586	DETECTION OF TT VIRUS AMONG CHIMPANZEES IN THE WILD USING A NONINVASIVE TECHNIQUE. Journal of Wildlife Diseases, 2004, 40, 230-237.	0.3	10
587	Viral evolution and the emergence of SARS coronavirus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1059-1065.	1.8	165
588	Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. Journal of General Virology, 2004, 85, 3149-3157.	1.3	108
589	Immune Selection for Altered Antigen Processing Leads to Cytotoxic T Lymphocyte Escape in Chronic HIV-1 Infection. Journal of Experimental Medicine, 2004, 199, 905-915.	4.2	266
590	Loss of Viral Control in Early HIVâ€1 Infection Is Temporally Associated with Sequential Escape from CD8+T Cell Responses and Decrease in HIV–1–Specific CD4+and CD8+T Cell Frequencies. Journal of Infectious Diseases, 2004, 190, 713-721.	1.9	63
591	High-Resolution Phylogenetic Analysis of Hepatitis C Virus Adaptation and Its Relationship to Disease Progression. Journal of Virology, 2004, 78, 3447-3454.	1.5	81
592	Distribution of Surface Protein Variants among Hyperinvasive Meningococci: Implications for Vaccine Design. Infection and Immunity, 2004, 72, 5955-5962.	1.0	180
593	HIV evolution: CTL escape mutation and reversion after transmission. Nature Medicine, 2004, 10, 282-289.	15.2	769
594	The causes and consequences of HIV evolution. Nature Reviews Genetics, 2004, 5, 52-61.	7.7	444

#	Article	IF	CITATIONS
595	The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2004, 2, 279-288.	13.6	327
596	Distinct patterns of natural selection in the reverse transcriptase gene of HIV-1 in the presence and absence of antiretroviral therapy. Virology, 2004, 325, 181-191.	1.1	27
597	The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology, 2004, 329, 168-179.	1.1	120
598	Sustained transmission of dengue virus type 1 in the Pacific due to repeated introductions of different Asian strains. Virology, 2004, 329, 505-512.	1.1	65
599	Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 2004, 303, 327-332.	6.0	1,159
600	The phylogeography of human viruses. Molecular Ecology, 2004, 13, 745-756.	2.0	155
601	Population Structure and Evolution of the Bacillus cereus Group. Journal of Bacteriology, 2004, 186, 7959-7970.	1.0	337
602	VIROLOGY: Enhanced: 1918 and All That. Science, 2004, 303, 1787-1788.	6.0	13
603	The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends in Microbiology, 2004, 12, 458-465.	3.5	133
604	Adaptation and Immunity. PLoS Biology, 2004, 2, e307.	2.6	29
605	The Transferrin Receptor Genes of Trypanosoma equiperdum Are Less Diverse in Their Transferrin Binding Site than Those of the Broad-Host Range Trypanosoma brucei. Journal of Molecular Evolution, 2003, 56, 377-386.	0.8	18
606	Evolution of major histocompatibility complex class I genes in Cetartiodactyls. Immunogenetics, 2003, 55, 193-202.	1.2	32
607	Geographic and species association of hepatitis B virus genotypes in non-human primates. Virology, 2003, 314, 381-393.	1.1	76
608	The origin, emergence and evolutionary genetics of dengue virus. Infection, Genetics and Evolution, 2003, 3, 19-28.	1.0	496
609	Sexual transmission of HIV in Africa. Nature, 2003, 422, 679-679.	13.7	61
610	Comparative population dynamics of mosquito-borne flaviviruses. Infection, Genetics and Evolution, 2003, 3, 87-95.	1.0	27
611	Origins, evolution, and vectorâ§,host coadaptations within the Genus Flavivirus. Advances in Virus Research, 2003, 59, 277-314.	0.9	163
612	Selection-Driven Evolution of Emergent Dengue Virus. Molecular Biology and Evolution, 2003, 20, 1650-1658.	3.5	168

#	Article	IF	CITATIONS
613	Error thresholds and the constraints to RNA virus evolution. Trends in Microbiology, 2003, 11, 543-546.	3.5	219
614	Molecular Clocks and the Puzzle of RNA Virus Origins. Journal of Virology, 2003, 77, 3893-3897.	1.5	138
615	Diverse Dengue Type 2 Virus Populations Contain Recombinant and Both Parental Viruses in a Single Mosquito Host. Journal of Virology, 2003, 77, 4463-4467.	1.5	58
616	The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Research, 2003, 92, 1-7.	1.1	420
617	Patterns of Intra- and Interhost Nonsynonymous Variation Reveal Strong Purifying Selection in Dengue Virus. Journal of Virology, 2003, 77, 11296-11298.	1.5	181
618	Inferring the Rate and Time-Scale of Dengue Virus Evolution. Molecular Biology and Evolution, 2003, 20, 122-129.	3.5	222
619	Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. Journal of General Virology, 2003, 84, 2691-2703.	1.3	239
620	Molecular epidemiology of dengue virus type 3 in Venezuela. Journal of General Virology, 2003, 84, 1569-1575.	1.3	77
621	The extent of homologous recombination in members of the genus Flavivirus. Journal of General Virology, 2003, 84, 429-440.	1.3	128
622	A molecular epidemiological study of Australian bat lyssavirus. Journal of General Virology, 2003, 84, 485-496.	1.3	71
623	Positively Charged Amino Acid Substitutions in the E2 Envelope Glycoprotein Are Associated with the Emergence of Venezuelan Equine Encephalitis Virus. Journal of Virology, 2002, 76, 1718-1730.	1.5	94
624	Is the Quasispecies Concept Relevant to RNA Viruses?. Journal of Virology, 2002, 76, 460-462.	1.5	113
625	Reduced Positive Selection in Vector-Borne RNA Viruses. Molecular Biology and Evolution, 2002, 19, 2333-2336.	3.5	115
626	Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. Journal of General Virology, 2002, 83, 2443-2454.	1.3	69
627	Phylogenetic Evidence for Frequent Positive Selection and Recombination in the Meningococcal Surface Antigen PorB. Molecular Biology and Evolution, 2002, 19, 1686-1694.	3.5	83
628	Recombination in Evolutionary Genomics. Annual Review of Genetics, 2002, 36, 75-97.	3.2	266
629	Rates of Molecular Evolution in RNA Viruses: A Quantitative Phylogenetic Analysis. Journal of Molecular Evolution, 2002, 54, 156-165.	0.8	596
630	A Revised Evolutionary History of Hepatitis B Virus (HBV). Journal of Molecular Evolution, 2002, 54, 807-814.	0.8	119

#	Article	IF	CITATIONS
631	Genetic Constraints and the Adaptive Evolution of Rabies Virus in Nature. Virology, 2002, 292, 247-257.	1.1	161
632	Phylogenetic Relationships and Differential Selection Pressures among Genotypes of Dengue-2 Virus. Virology, 2002, 298, 63-72.	1.1	221
633	Extinction and Rapid Emergence of Strains of Dengue 3 Virus during an Interepidemic Period. Virology, 2002, 301, 148-156.	1.1	149
634	Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. Journal of General Virology, 2002, 83, 1419-1430.	1.3	29
635	Phylogenetic evidence for adaptive evolution of dengue viruses in nature. Journal of General Virology, 2002, 83, 1679-1689.	1.3	115
636	Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. Journal of General Virology, 2002, 83, 2337-2337.	1.3	0
637	Transmission of hepatitis B virus infection in Gambian families revealed by phylogenetic analysis. Journal of Hepatology, 2001, 35, 99-104.	1.8	94
638	The Epidemic Behavior of the Hepatitis C Virus. Science, 2001, 292, 2323-2325.	6.0	405
639	Evidence for the Non-quasispecies Evolution of RNA Viruses. Molecular Biology and Evolution, 2001, 18, 987-994.	3.5	53
640	Origin and Evolution of Viruses. Esteban Domingo , Robert Webster , John Holland. Quarterly Review of Biology, 2001, 76, 71-72.	0.0	0
641	Variable Immune-Driven Natural Selection in the Attachment (G) Glycoprotein of Respiratory Syncytial Virus (RSV). Journal of Molecular Evolution, 2001, 52, 182-192.	0.8	64
642	Evolution of Base Composition and Codon Usage Bias in the Genus Flavivirus. Journal of Molecular Evolution, 2001, 52, 383-390.	0.8	99
643	The CD45 locus in cattle: allelic polymorphism and evidence for exceptional positive natural selection. Immunogenetics, 2001, 52, 276-283.	1.2	19
644	Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation. Immunology Letters, 2001, 79, 109-116.	1.1	34
645	On the origin and evolution of the human immunodeficiency virus (HIV). Biological Reviews, 2001, 76, 239-254.	4.7	58
646	Phylogeny and the origin of HIV-1. Nature, 2001, 410, 1047-1048.	13.7	143
647	Recombination within natural populations of pathogenic bacteria: Short-term empirical estimates and long-term phylogenetic consequences. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 182-187.	3.3	489
648	Evolution, epidemiology, and dispersal of flaviviruses revealed by molecular phylogenies. Advances in Virus Research, 2001, 57, 71-103.	0.9	89

#	Article	IF	Citations
649	Homologous Recombination in GB Virus C/Hepatitis G Virus. Molecular Biology and Evolution, 2001, 18, 254-261.	3.5	61
650	Phylogenetic Analysis of Multiple Heterosexual Transmission Events Involving Subtype B of HIV Type 1. AIDS Research and Human Retroviruses, 2001, 17, 689-695.	0.5	12
651	Clustered Mutations in HIV-1 Gag Are Consistently Required for Escape from Hla-B27–Restricted Cytotoxic T Lymphocyte Responses. Journal of Experimental Medicine, 2001, 193, 375-386.	4.2	424
652	Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. Journal of General Virology, 2001, 82, 2463-2474.	1.3	55
653	Testing the Extent of Sequence Similarity Among Viroids, Satellite RNAs, and Hepatitis Delta Virus. Journal of Molecular Evolution, 2000, 50, 98-102.	0.8	17
654	Detection of Hepatitis B Virus Infection in Wild-Born Chimpanzees (Pan troglodytes verus): Phylogenetic Relationships with Human and Other Primate Genotypes. Journal of Virology, 2000, 74, 4253-4257.	1.5	101
655	The evolution of base composition and phylogenetic inference. Trends in Ecology and Evolution, 2000, 15, 365-369.	4.2	135
656	The causes and consequences of genetic variation in dengue virus. Trends in Microbiology, 2000, 8, 74-77.	3.5	149
657	Genetic Diversity of Borrelia burgdorferi Sensu Lato in Ticks from Mainland Portugal. Journal of Clinical Microbiology, 2000, 38, 2128-2133.	1.8	4
658	Genetic Diversity of <i>Borrelia burgdorferi</i> Sensu Lato in Ticks from Mainland Portugal. Journal of Clinical Microbiology, 2000, 38, 2128-2133.	1.8	81
659	The evolution of MHC class I genes in cattle. , 2000, , 273-278.		0
660	Phylogenetic evidence for recombination in dengue virus. Molecular Biology and Evolution, 1999, 16, 405-409.	3.5	356
661	Ecology and evolution of rabies virus in Europe. Journal of General Virology, 1999, 80, 2545-2557.	1.3	235
662	Reconstructing the Complex Evolutionary History of Hepatitis B Virus. Journal of Molecular Evolution, 1999, 49, 130-141.	0.8	53
663	Evolutionary History of MHC Class I Genes in the Mammalian Order Perissodactyla. Journal of Molecular Evolution, 1999, 49, 316-324.	0.8	31
664	Widespread intra-serotype recombination in natural populations of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7352-7357.	3.3	226
665	Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Research, 1999, 64, 107-123.	1.1	82
666	Genealogical Evidence for Positive Selection in the nef Gene of HIV-1. Genetics, 1999, 153, 1077-1089.	1.2	113

#	Article	IF	CITATIONS
667	Evolutionary aspects of recombination in RNA viruses. Journal of General Virology, 1999, 80, 2535-2543.	1.3	482
668	Editorial: Molecular epidemiology of dengue virus – the time for big science. Tropical Medicine and International Health, 1998, 3, 855-856.	1.0	16
669	10 The Emergence of Dengue: Past Present and Future. Biomedical Research Reports, 1998, , 301-325.	0.3	9
670	Genetic Drift of Human Immunodeficiency Virus Type 1?. Journal of Virology, 1998, 72, 886-887.	1.5	7
671	Secondary structure of the 3' untranslated region of flaviviruses: similarities and differences. Nucleic Acids Research, 1997, 25, 1194-1202.	6.5	178
672	Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the $5\hat{a} \in 2$ and $3\hat{a} \in 2$ -UTRs. Virus Research, 1997, 49, 27-39.	1.1	124
673	The Ecology of Emergent Infectious Disease. BioScience, 1996, 46, 127-135.	2.2	13
674	Primer Master: a new program for the design and analysis of PCR primers. Bioinformatics, 1996, 12, 253-255.	1.8	23
675	Population dynamics of flaviviruses revealed by molecular phylogenies Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 548-553.	3.3	300
676	Recombination between sequences of hepatitis B virus from different genotypes. Journal of Molecular Evolution, 1996, 42, 97-102.	0.8	101
677	The limits of molecular phylogeny: the case of the genus Flavivirus and the family Flaviviridae. Virus Reviews & Research: Journal of the Brazilian Society for Virology, 1996, 1, .	0.1	0
678	Causes of HIV diversity. Nature, 1995, 376, 125-125.	13.7	164
679	Further Characterization of 2 Types of Precore Variant Hepatitis B Virus Isolates from Hong Kong. Journal of Infectious Diseases, 1995, 171, 1461-1467.	1.9	13
680	The Molecular Epidemiology Of Human Immunodeficiency Virus Type 1 In Edinburgh. Journal of Infectious Diseases, 1995, 171, 45-53.	1.9	87
681	Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Research, 1995, 35, 307-321.	1.1	70
682	Molecular epidemiology of an outbreak of infection with hepatitis C virus in recipients of anti-D immunoglobulin. Lancet, The, 1995, 345, 1211-1213.	6.3	157
683	Speciation: Spinning the web of life. Current Biology, 1994, 4, 841-843.	1.8	2
684	Genes, trees and infections: Molecular evidence in epidemiology. Trends in Ecology and Evolution, 1994, 9, 256-260.	4.2	13

#	ARTICLE	IF	CITATIONS
685	Sequence data as evidence. Nature, 1993, 364, 766-766.	13.7	21
686	Fitting the bill. Current Biology, 1993, 3, 776-777.	1.8	6
687	Molecular Investigation of Human Immunodeficiency Virus (HIV) Infection in a Patient of an HIV-Infected Surgeon. Journal of Infectious Diseases, 1993, 167, 1411-1414.	1.9	96
688	Heterosexual transmission of hepatitis C virus. Lancet, The, 1993, 342, 1052-1053.	6.3	40
689	Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4835-4839.	3.3	262
690	Different rates of substitution may produce different phylogenies of the eutherian mammals. Journal of Molecular Evolution, 1991, 33, 209-215.	0.8	26
691	Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates. Journal of Human Evolution, 1989, 18, 775-794.	1.3	34
692	RNA Virome Composition Is Shaped by Sampling Ecotype. SSRN Electronic Journal, 0, , .	0.4	4
693	Molecular Monitoring of SARS-CoV-2 in Different Sewage Plants in Venice and the Implications for Genetic Surveillance. ACS ES&T Water, 0, , .	2.3	1