Noah Strobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2200722/publications.pdf

Version: 2024-02-01

15	328	9	11
papers	citations	h-index	g-index
15	15	15	512 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A Hybrid Optoelectronic Sensor Platform with an Integrated Solutionâ€Processed Organic Photodiode. Advanced Materials Technologies, 2021, 6, 2000172.	5.8	4
2	Aerosolâ€Jetâ€Printed Donorâ€Blocking Layer for Organic Photodiodes. Advanced Electronic Materials, 2021, 7, 2000811.	5.1	11
3	Inkjet-Printed Tin Oxide Hole-Blocking Layers for Organic Photodiodes. ACS Applied Electronic Materials, 2021, 3, 4959-4966.	4.3	7
4	Colorâ€Selective Printed Organic Photodiodes for Filterless Multichannel Visible Light Communication. Advanced Materials, 2020, 32, e1908258.	21.0	91
5	Diketopyrrolopyrrole-Polymer Meets Thiol–Ene Click Chemistry: A Cross-Linked Acceptor for Thermally Stable Near-Infrared Photodetectors. Chemistry of Materials, 2019, 31, 7657-7665.	6.7	20
6	Organic photodiodes: printing, coating, benchmarks, and applications. Flexible and Printed Electronics, 2019, 4, 043001.	2.7	48
7	Design and Color Flexibility for Inkjet-Printed Perovskite Photovoltaics. ACS Applied Energy Materials, 2019, 2, 764-769.	5.1	32
8	Fully Digitally Printed Image Sensor Based on Organic Photodiodes. Advanced Optical Materials, 2018, 6, 1701108.	7.3	39
9	Semiconductor:Insulator Blends for Speed Enhancement in Organic Photodiodes. Advanced Electronic Materials, 2018, 4, 1700345.	5.1	20
10	Non-Fullerene-Based Printed Organic Photodiodes with High Responsivity and Megahertz Detection Speed. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42733-42739.	8.0	34
11	Realization of Colors and Patterns for Inkjet-Printed Perovskite Solar Cells. , 2018, , .		1
12	From printed organic photodiodes to printed image sensors (Conference Presentation)., 2018,,.		0
13	Roll-to-roll production of a microfluidic platform and its functionalization by means of digital printing technologies for gas and fluid sensors (Conference Presentation). , 2018, , .		1
14	Microfluidic surface-enhanced Raman analysis systems by aerosol jet printing: Towards low-cost integrated sensor systems. , 2017, , .		1
15	Lab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing. Sensors, 2017, 17, 2401.	3.8	19