
Brian E Mapes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/220062/publications.pdf Version: 2024-02-01

RDIAN F MADES

#	Article	IF	CITATIONS
1	Evidence of Aggregation Dependence of 5-degree Scale Tropical Convective Evolution Using a Gross Moist Stability Framework. Journals of the Atmospheric Sciences, 2022, , .	1.7	1
2	Toward Form-Function Relationships for Mesoscale Structure in Convection. Journal of the Meteorological Society of Japan, 2021, 99, 847-878.	1.8	2
3	Kerala floods in consecutive years - Its association with mesoscale cloudburst and structural changes in monsoon clouds over the west coast of India. Weather and Climate Extremes, 2021, 33, 100339.	4.1	31
4	Space–Time Spectral Analysis of the Moist Static Energy Budget Equation. Journal of Climate, 2019, 32, 501-529.	3.2	24
5	Nonlinear Zonal Propagation of Organized Convection in the Tropics. Journals of the Atmospheric Sciences, 2019, 76, 2837-2867.	1.7	1
6	Estimating Convection's Moisture Sensitivity: An Observation–Model Synthesis Using AMIE-DYNAMO Field Data. Journals of the Atmospheric Sciences, 2019, 76, 1505-1520.	1.7	4
7	A Mechanism for the Maintenance of Sharp Tropical Margins. Journals of the Atmospheric Sciences, 2019, 77, 1181-1197.	1.7	5
8	A Global Atlas of Tropical Precipitation Extremes. , 2019, , 1-13.		1
9	Cumulus Friction in the Asian Monsoon of a Global Model with 7 km Mesh. Springer Atmospheric Sciences, 2019, , 197-205.	0.3	2
10	Effects of a Simple Convective Organization Scheme in a Twoâ€Plume <scp>GCM</scp> . Journal of Advances in Modeling Earth Systems, 2018, 10, 867-880.	3.8	17
11	The Meandering Margin of the Meteorological Moist Tropics. Geophysical Research Letters, 2018, 45, 1177-1184.	4.0	29
12	The Risks of Contracting the Acquisition and Processing of the Nation's Weather and Climate Data to the Private Sector. Bulletin of the American Meteorological Society, 2018, 99, 869-870.	3.3	6
13	Shape of Atlantic Tropical Cyclone Tracks and the Indian Monsoon. Geophysical Research Letters, 2018, 45, 10,746.	4.0	13
14	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	12.9	100
15	The late spring Caribbean rainâ€belt: climatology and dynamics. International Journal of Climatology, 2017, 37, 4981-4993.	3.5	18
16	Importance Profiles for Water Vapor. Surveys in Geophysics, 2017, 38, 1355-1369.	4.6	14
17	Distribution of cloudiness and categorization of rainfall types based on INSAT IR brightness temperatures over Indian subcontinent and adjoining oceanic region during south west monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161, 76-82.	1.6	3
18	Relationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale. Journals of the Atmospheric Sciences, 2017, 74, 531-552.	1.7	14

#	Article	IF	CITATIONS
19	Tangent linear superparameterization of convection in a 10 layer global atmosphere with calibrated climatology. Journal of Advances in Modeling Earth Systems, 2017, 9, 932-948.	3.8	5
20	Importance Profiles for Water Vapor. Space Sciences Series of ISSI, 2017, , 183-197.	0.0	2
21	Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamicalâ€convective coupling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,319.	3.3	6
22	A Lagrangian View of Moisture Dynamics during DYNAMO. Journals of the Atmospheric Sciences, 2016, 73, 1967-1985.	1.7	29
23	The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. Journal of Advances in Modeling Earth Systems, 2016, 8, 1868-1891.	3.8	47
24	February Drying in Southeastern Brazil and the Australian Monsoon: Global Mechanism for a Regional Rainfall Feature. Journal of Climate, 2016, 29, 7529-7546.	3.2	5
25	Informativeness of wind data in linear Madden–Julian oscillation prediction. Atmospheric Science Letters, 2016, 17, 362-367.	1.9	0
26	Gregarious convection and radiative feedbacks in idealized worlds. Journal of Advances in Modeling Earth Systems, 2016, 8, 1029-1033.	3.8	19
27	The climate response of the Indoâ€Pacific warm pool to glacial sea level. Paleoceanography, 2016, 31, 866-894.	3.0	76
28	Vertical structure and physical processes of the Maddenâ€Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4690-4717.	3.3	63
29	The skill of atmospheric linear inverse models in hindcasting the Madden–Julian Oscillation. Climate Dynamics, 2015, 44, 897-906.	3.8	22
30	Springtime ENSO phase evolution and its relation to rainfall in the continental U.S Geophysical Research Letters, 2014, 41, 1673-1680.	4.0	39
31	Differences between Faster versus Slower Components of Convectively Coupled Equatorial Waves. Journals of the Atmospheric Sciences, 2014, 71, 98-111.	1.7	11
32	Asian Monsoon Forcing of Subtropical Easterlies in the Community Atmosphere Model: Summer Climate Implications for the Western Atlantic. Journal of Climate, 2013, 26, 2741-2755.	3.2	16
33	Differences between More Divergent and More Rotational Types of Convectively Coupled Equatorial Waves. Part II: Composite Analysis based on Space–Time Filtering. Journals of the Atmospheric Sciences, 2012, 69, 17-34.	1.7	41
34	Diagnosis of Tropical Biases and the MJO from Patterns in the MERRA Analysis Tendency Fields. Journal of Climate, 2012, 25, 6202-6214.	3.2	51
35	Differences between More Divergent and More Rotational Types of Convectively Coupled Equatorial Waves. Part I: Space–Time Spectral Analyses. Journals of the Atmospheric Sciences, 2012, 69, 3-16.	1.7	60
36	Interpretations of systematic errors in the NCEP Climate Forecast System at lead times of 2, 4, 8,, 256 days. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	4

#	Article	IF	CITATIONS
37	Zonal mean wind, the Indian monsoon, and July drying in the western Atlantic subtropics. Journal of Geophysical Research, 2011, 116, .	3.3	26
38	Parameterizing Convective Organization to Escape the Entrainment Dilemma. Journal of Advances in Modeling Earth Systems, 2011, 3, n/a-n/a.	3.8	161
39	Clouds Associated with the Madden–Julian Oscillation: A New Perspective from CloudSat. Journals of the Atmospheric Sciences, 2011, 68, 3032-3051.	1.7	119
40	Characteristics of 3–4- and 6–8-Day Period Disturbances Observed over the Tropical Indian Ocean. Monthly Weather Review, 2010, 138, 4158-4174.	1.4	21
41	Idealized Simulations of the Intertropical Convergence Zone and Its Multilevel Flows. Journals of the Atmospheric Sciences, 2010, 67, 4028-4053.	1.7	35
42	Land Surface Heating and the North American Monsoon Anticyclone: Model Evaluation from Diurnal to Seasonal. Journal of Climate, 2010, 23, 4096-4106.	3.2	7
43	Transient Environmental Sensitivities of Explicitly Simulated Tropical Convection. Journals of the Atmospheric Sciences, 2010, 67, 923-940.	1.7	64
44	Composite Life Cycle of Maritime Tropical Mesoscale Convective Systems in Scatterometer and Microwave Satellite Observations. Journals of the Atmospheric Sciences, 2009, 66, 199-208.	1.7	46
45	Unexpected peak near â^'15°C in CloudSat echo top climatology. Geophysical Research Letters, 2009, 36, .	4.0	28
46	A Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies. Journal of Climate, 2009, 22, 272-284.	3.2	111
47	Virtual Field Campaigns on Deep Tropical Convection in Climate Models. Journal of Climate, 2009, 22, 244-257.	3.2	15
48	Predicting the influence of observations on mediumâ€range forecasts of atmospheric flow. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 2011-2027.	2.7	16
49	Multiscale Convective Wave Disturbances in the Tropics: Insights from a Two-Dimensional Cloud-Resolving Model. Journals of the Atmospheric Sciences, 2008, 65, 140-155.	1.7	76
50	What Are the Sources of Mechanical Damping in Matsuno–Cill-Type Models?. Journal of Climate, 2008, 21, 165-179.	3.2	32
51	North American Monsoon and Convectively Coupled Equatorial Waves Simulated by IPCC AR4 Coupled GCMs. Journal of Climate, 2008, 21, 2919-2937.	3.2	33
52	Subseasonal Variability Associated with Asian Summer Monsoon Simulated by 14 IPCC AR4 Coupled GCMs. Journal of Climate, 2008, 21, 4541-4567.	3.2	116
53	Characteristics of Cloud Size of Deep Convection Simulated by a Global Cloud Resolving Model over the Western Tropical Pacific. Journal of the Meteorological Society of Japan, 2008, 86A, 1-15.	1.8	59
54	Predictability Aspects of Global Aqua-planet Simulations with Explicit Convection. Journal of the Meteorological Society of Japan, 2008, 86A, 175-185.	1.8	40

#	Article	IF	CITATIONS
55	Cloud Vertical Structure Observed from Space and Ship over the Bay of Bengal and the Eastern Tropical Pacific. Journal of the Meteorological Society of Japan, 2008, 86A, 205-218.	1.8	19
56	Vertical-Mode and Cloud Decomposition of Large-Scale Convectively Coupled Gravity Waves in a Two-Dimensional Cloud-Resolving Model. Journals of the Atmospheric Sciences, 2007, 64, 1210-1229.	1.7	95
57	Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models. Part I: Convective Signals. Journal of Climate, 2006, 19, 2665-2690.	3.2	664
58	The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves?. Dynamics of Atmospheres and Oceans, 2006, 42, 3-29.	1.8	311
59	The Interaction of Clouds and Dry Air in the Eastern Tropical Pacific. Journal of Climate, 2006, 19, 4531-4544.	3.2	29
60	Zonal Momentum Budget of the Madden–Julian Oscillation: The Source and Strength of Equivalent Linear Damping. Journals of the Atmospheric Sciences, 2005, 62, 2172-2188.	1.7	65
61	Indian Monsoon Onset and the Americas Midsummer Drought: Out-of-Equilibrium Responses to Smooth Seasonal Forcing. Journal of Climate, 2005, 18, 1109-1115.	3.2	58
62	Doppler Radar Observations of Mesoscale Wind Divergence in Regions of Tropical Convection. Monthly Weather Review, 2005, 133, 1808-1824.	1.4	34
63	Comparison of Cumulus Parameterizations and Entrainment Using Domain-Mean Wind Divergence in a Regional Model. Journals of the Atmospheric Sciences, 2004, 61, 1284-1295.	1.7	16
64	Wind shear effects on cloud-radiation feedback in the western Pacific warm pool. Geophysical Research Letters, 2004, 31, .	4.0	17
65	Effect of Vertical Dipole Temperature Anomalies on Convection in a Cloud Model. Journals of the Atmospheric Sciences, 2004, 61, 2092-2100.	1.7	3
66	Radiation Budget of the Tropical Intraseasonal Oscillation. Journals of the Atmospheric Sciences, 2004, 61, 2050-2062.	1.7	74
67	Stratiform Precipitation, Vertical Heating Profiles, and the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2004, 61, 296-309.	1.7	210
68	Sensitivities of Cumulus-Ensemble Rainfall in a Cloud-Resolving Model with Parameterized Large-Scale Dynamics. Journals of the Atmospheric Sciences, 2004, 61, 2308-2317.	1.7	28
69	Bimodality in tropical water vapour. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2847-2866.	2.7	113
70	Diurnal Patterns of Rainfall in Northwestern South America. Part II: Model Simulations. Monthly Weather Review, 2003, 131, 813-829.	1.4	70
71	Diurnal Patterns of Rainfall in Northwestern South America. Part III: Diurnal Gravity Waves and Nocturnal Convection Offshore. Monthly Weather Review, 2003, 131, 830-844.	1.4	243
72	Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context. Monthly Weather Review, 2003, 131, 799-812.	1.4	140

#	Article	IF	CITATIONS
73	Sampling Errors in Rawinsonde-Array Budgets. Journals of the Atmospheric Sciences, 2003, 60, 2697-2714.	1.7	44
74	Impacts of Cumulus Convection Parameterization on Aqua-planet AGCM Simulations of Tropical Intraseasonal Variability. Journal of the Meteorological Society of Japan, 2003, 81, 963-992.	1.8	86
75	Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. Journal of Geophysical Research, 2001, 106, 14219-14233.	3.3	94
76	NOTES AND CORRESPONDENCE Convective Eddy Momentum Tendencies in Long Cloud-Resolving Model Simulations. Journals of the Atmospheric Sciences, 2001, 58, 517-526.	1.7	30
77	Water's two height scales: The moist adiabat and the radiative troposphere. Quarterly Journal of the Royal Meteorological Society, 2001, 127, 2353-2366.	2.7	72
78	Mesoscale Processes and Severe Convective Weather. , 2001, , 71-122.		19
79	Convective Inhibition, Subgrid-Scale Triggering Energy, and Stratiform Instability in a Toy Tropical Wave Model. Journals of the Atmospheric Sciences, 2000, 57, 1515-1535.	1.7	330
80	Asymptotic approaches to convective quasi-equilibrium. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 1861-1887.	2.7	6
81	The Large-Scale Part of Tropical Mesoscale Convective System Circulations. Journal of the Meteorological Society of Japan, 1998, 76, 29-55.	1.8	55
82	Equilibrium Vs. Activation Control of Large-Scale Variations of Tropical Deep Convection. , 1997, , 321-358.		44
83	Mutual Adjustment of Mass Flux and Stratification Profiles. , 1997, , 399-411.		7
84	Multiscale Variability of Deep Convection In Realation to Large-Scale Circulation in TOGA COARE. Journals of the Atmospheric Sciences, 1996, 53, 1380-1409.	1.7	340
85	Diabatic Divergence Profiles in Western Pacific Mesoscale Convective Systems. Journals of the Atmospheric Sciences, 1995, 52, 1807-1828.	1.7	312
86	An integrated view of the 1987 Australin monsoon and its mesoscale convective systems. II: Vertical structure. Quarterly Journal of the Royal Meteorological Society, 1993, 119, 733-754.	2.7	24
87	Gregarious Tropical Convection. Journals of the Atmospheric Sciences, 1993, 50, 2026-2037.	1.7	334
88	An Integrated View of the 1987 Australian Monsoon and Its Mesoscale Convective Systems. I: Horizontal Structure. Quarterly Journal of the Royal Meteorological Society, 1992, 118, 927-963.	2.7	91
89	Idealized simulations of the tropical climate and variability in the Single Column Atmosphere Model (SCAM). Part I: Radiativeâ€convective equilibrium. Journal of Advances in Modeling Earth Systems, 0, , .	3.8	0