Hans-René Bjørsvik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2199946/publications.pdf

Version: 2024-02-01

59 1,312 20 34
papers citations h-index g-index

61 61 61 1623 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quantitative Structureâ 'Activity Relationships of Ruthenium Catalysts for Olefin Metathesis. Journal of the American Chemical Society, 2006, 128, 6952-6964.	13.7	202
2	Fine Chemicals from Lignosulfonates. 1. Synthesis of Vanillin by Oxidation of Lignosulfonates. Organic Process Research and Development, 1999, 3, 330-340.	2.7	163
3	Organic Processes to Pharmaceutical Chemicals Based on Fine Chemicals from Lignosulfonates. Organic Process Research and Development, 2002, 6, 279-290.	2.7	68
4	High Selectivity in the Oxidation of Mandelic Acid Derivatives and inO-Methylation of Protocatechualdehyde:Â New Processes for Synthesis of Vanillin,iso-Vanillin, and Heliotropin. Organic Process Research and Development, 2000, 4, 534-543.	2.7	48
5	Ruthenium Alkylidene Complexes of Chelating Amine Ligands. Organometallics, 2007, 26, 5803-5814.	2.3	40
6	Synthesis of a new bidentate NHC–Ag(I) complex and its unanticipated reaction with the Hoveyda–Grubbs first generation catalyst. Tetrahedron, 2009, 65, 7186-7194.	1.9	39
7	The First Imidazolium-Substituted Metal Alkylidene. Organometallics, 2007, 26, 4383-4385.	2.3	38
8	Separation of Reaction Product and Palladium Catalyst after a Heck Coupling Reaction by means of Organic Solvent Nanofiltration. ChemSusChem, 2012, 5, 188-193.	6.8	33
9	Organocatalyzed Epoxidation of Alkenes in Continuous Flow using a Multiâ€Jet Oscillating Disk Reactor. ChemSusChem, 2012, 5, 261-265.	6.8	31
10	Synthesis of the Carbazole Scaffold Directly from 2â€Aminobiphenyl by Means of Tandem C–H Activation and C–N Bond Formation. European Journal of Organic Chemistry, 2016, 2016, 5474-5479.	2.4	31
11	Synthesis of 2-Nitro- and 2,2â€~-Dinitrobiphenyls by Means of the Suzuki Cross-Coupling Reaction. Journal of Organic Chemistry, 2005, 70, 9591-9594.	3.2	30
12	A Threeâ€Way Switchable Process for Suzuki Crossâ€Coupling, Hydrodehalogenation, or an Assisted Tandem Hydrodehalogenation and Suzuki Crossâ€Coupling Sequence. Advanced Synthesis and Catalysis, 2013, 355, 3231-3243.	4.3	30
13	4â€Alkylated Silver–Nâ€Heterocyclic Carbene (NHC) Complexes with Cytotoxic Effects in Leukemia Cells. ChemMedChem, 2015, 10, 1522-1527.	3.2	28
14	Investigations of a Novel Process to the Framework of Benzo[c]cinnoline. Journal of Organic Chemistry, 2004, 69, 7720-7727.	3.2	27
15	A New Modified "Montanari Oxidation Process―by Means of Chlorine Dissolved in the Reaction Solvent as Oxidant and TEMPO as Catalyst: Oxidation of 3-S-Quinuclidinol to 3-Quinuclidinone. Organic Process Research and Development, 2002, 6, 197-200.	2.7	26
16	A Novel Efficient Deoxygenation Process forN-HeteroareneN-Oxides. Journal of Organic Chemistry, 2005, 70, 3218-3224.	3.2	26
17	A Highly Selective Aerobic Oxidation Process Catalyzed by Electron-Deficient Nitroarenes via Single Electron Transfer Processes. Journal of Organic Chemistry, 2002, 67, 7493-7500.	3.2	23
18	Green and Efficient Synthesis of Bidentate Schiff Base Ru Catalysts for Olefin Metathesis. Journal of Organic Chemistry, 2007, 72, 3561-3564.	3.2	23

#	Article	IF	CITATIONS
19	Highly Selective and Efficient Conversion of Alkyl Aryl and Alkyl Cyclopropyl Ketones to Aromatic and Cyclopropane Carboxylic Acids by Aerobic Catalytic Oxidation: A Free-radical Redox Chain Mechanism Synlett, 2002, 2002, 0610-0612.	1.8	21
20	Efficient and Green Telescoped Process to 2-Methoxy-3-methyl-[1,4]benzoquinone. Journal of Organic Chemistry, 2006, 71, 1703-1706.	3.2	21
21	A Highly Efficient Pd(PPh ₃) ₄ â€Catalyzed Suzuki Crossâ€Coupling Method for the Preparation of 2â€NitrobiÂphenyls from 1â€Chloroâ€2â€nitrobenzÂenes and Phenylboronic Acids. European Journal of Organic Chemistry, 2016, 2016, 1344-1354.	2.4	21
22	Carboxylic acids from methyl aryl ketones by means of a new composite aerobic oxidation process. Tetrahedron Letters, 2002, 43, 4985-4987.	1.4	20
23	Synthesis of Phenylboronic Acids in Continuous Flow by Means of a Multijet Oscillating Disc Reactor System Operating at Cryogenic Temperatures. Organic Process Research and Development, 2012, 16, 1121-1130.	2.7	20
24	Synthesis of Amides from Alcohols and Amines Through a Domino Oxidative Amidation and Telescoped Transamidation Process. European Journal of Organic Chemistry, 2018, 2018, 4436-4445.	2.4	19
25	Fine Chemicals from Lignosulfonates. 2. Synthesis of Veratric Acid from Acetovanillon. Organic Process Research and Development, 1999, 3, 341-346.	2.7	18
26	Synthesis of Methoxy-Substituted Phenols by Peracid Oxidation of the Aromatic Ring. Journal of Organic Chemistry, 2005, 70, 7290-7296.	3.2	18
27	A novel simple and efficient bromination protocol for activated arenes. Tetrahedron Letters, 2009, 50, 831-833.	1.4	16
28	A bromine-catalysed free-radical oxidation of acetamides from primary and secondary alkylamines by H2O2. Chemical Communications, 2001, , 523-524.	4.1	15
29	New Selective Oxidation Reactions by Nitroarenes in Basic Medium Involving Electron-Transfer Processes. Organic Process Research and Development, 2001, 5, 136-140.	2.7	14
30	Scope and Mechanistic Limitations of a Sonogashira Coupling Reaction on an Âlmidazole Backbone. European Journal of Organic Chemistry, 2015, 2015, 4658-4666.	2.4	14
31	Stille Crossâ€Coupling for the Functionalization of the Imidazole Backbone: Revisit, Improvement, and Applications of the Method. European Journal of Organic Chemistry, 2015, 2015, 3506-3512.	2.4	14
32	Continuous flow synthesis concatenated with continuous flow liquid–liquid extraction for work-up and purification: selective mono- and di-iodination of the imidazole backbone. Reaction Chemistry and Engineering, 2016, 1, 436-444.	3.7	14
33	Principal Properties of Monodentate Phosphorus Ligands. Predictive Model for the Carbonyl Absorption Frequencies in Ni(CO)3L Complexes Acta Chemica Scandinavica, 1997, 51, 733-741.	0.7	14
34	Continuous flow synthesis of the iodination agent $1,3$ -diiodo- $5,5$ -dimethyl-imidazolidine- $2,4$ -dione telescoped with semi-continuous product isolation. Reaction Chemistry and Engineering, 2016, $1,379$ -386.	3.7	13
35	Nitroarene catalyzed oxidation with sodium percarbonate or sodium perborate as the terminal oxidant. Tetrahedron Letters, 2004, 45, 8615-8620.	1.4	12
36	Indium powder as the reducing agent in the synthesis of 2-amino-1,1′-biphenyls. Tetrahedron Letters, 2016, 57, 1224-1226.	1.4	11

#	Article	IF	CITATIONS
37	Fast Halogenation of Some N <i>â€</i> Heterocycles by Means of <i>N</i> , <i>N′</i> àâ€Dihaloâ€5,5â€dimethylhydantoin. Advanced Synthesis and Catalysis, 2013, 355, 499-507.	4.3	10
38	Synthesis of Imidazole Alkaloids Originated in Marine Sponges. Studies in Natural Products Chemistry, 2014, 42, 33-57.	1.8	10
39	Synthesis of Boscalid <i>via</i> a three-step telescoped continuous flow process implemented on a MJOD reactor platform. Reaction Chemistry and Engineering, 2018, 3, 550-558.	3.7	10
40	Continuous Flow Olefin Metathesis Using a Multijet Oscillating Disk Reactor as the Reaction Platform. Organic Process Research and Development, 2014, 18, 1509-1515.	2.7	8
41	A Co ₂ B Mediated NaBH ₄ Reduction Protocol Applicable to a Selection of Functional Groups in Organic Synthesis. European Journal of Organic Chemistry, 2018, 2018, 3416-3425.	2.4	8
42	Functionalization of the Imidazole Backbone by Means of a Tailored and Optimized Oxidative Heck Crossâ€Coupling. Advanced Synthesis and Catalysis, 2020, 362, 5079-5092.	4.3	8
43	Online Spectroscopy and Multivariate Data Analysis as a Combined Tool for Process Monitoring and Reaction Optimization. Organic Process Research and Development, 2004, 8, 495-503.	2.7	7
44	A Concise Synthesis to Benzo[<i>c</i>]cinnolines via 2,2'-Dinitro-1,1'-Biphenyls Attained from a Novel Tailored Suzuki Cross-Coupling. ChemistrySelect, 2017, 2, 9387-9390.	1.5	7
45	Synthesis of Nâ€Aryl―and Nâ€alkylâ€Substituted Imidazolium Silver Complexes: Cytotoxic Screening by Using Human Cell Lines Modelling Acute Myeloid Leukaemia. ChemMedChem, 2020, 15, 1509-1514.	3.2	7
46	Structureâ€Activityâ€Relationshipâ€Aided Design and Synthesis of xCT Antiporter Inhibitors. ChemMedChem, 2021, 16, 2650-2668.	3.2	6
47	The Baeyerâ€Villiger oxidation versus aromatic ring hydroxylation: competing organic peracid oxidation mechanisms explored by multivariate modelling of designed multiâ€response experiments. Journal of Physical Organic Chemistry, 2015, 28, 619-628.	1.9	5
48	Carbazomycin G: Method Development and Total Synthesis. European Journal of Organic Chemistry, 2018, 2018, 1984-1992.	2.4	5
49	Amino‶EMPO Grafted on Magnetic Multiâ€Walled Nanotubes: An Efficient and Recyclable Heterogeneous Oxidation Catalyst. European Journal of Organic Chemistry, 2019, 2019, 1405-1412.	2.4	4
50	An environmentally benign and high-rate Appel type reaction. Reaction Chemistry and Engineering, 2022, 7, 1650-1659.	3.7	3
51	Imidazole backbone functionalization with olefin crossmetathesis. European Journal of Organic Chemistry, 0, , .	2.4	3
52	Multivariate Optimization of a Cyclopropanation, the Key Step in the Synthesis of 3,3,4,4-Tetraethoxybut-1-yne. Organic Process Research and Development, 2014, 18, 891-896.	2.7	2
53	A two-step telescoped continuous flow switchable process leading to nitriles, diaziridine or hydrazine derivatives. Reaction Chemistry and Engineering, 2019, 4, 41-51.	3.7	2
54	Hit to Leads with Cytotoxic Effect in Leukemic Cells: Total Synthesis Intermediates as a Molecule Treasure Chest. ChemMedChem, 2020, 15, 862-870.	3.2	2

#	Article	IF	CITATIONS
55	The Styryl Benzoic Acid Derivative DC10 Potentiates Radiotherapy by Targeting the xCT-Glutathione Axis. Frontiers in Oncology, 2022, 12, 786739.	2.8	2
56	Extraction, isolation, and purification of analytes from samples of marine origin – A multivariate task. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 910, 46-53.	2.3	1
57	Controlling the Course of a Twoâ€Way Switchable Pdâ€Catalyzed Process by means of Empirical Multivariate Models. ChemCatChem, 2015, 7, 2196-2205.	3.7	1
58	A Scalable Highâ€Yielding and Selective Oxidative Heck Crossâ€Coupling – A Key Step for the Synthesis of trans―Stilbenes. European Journal of Organic Chemistry, 2021, 2021, 5519.	2.4	0
59	EXTH-32. NOVEL THIORIDAZINE DERIVATES: ANTIPROLIFERATIVE AND APOPTOSIS-INDUCING ACTIVITY ON GLIOBLASTOMA CELLS IN VITRO. Neuro-Oncology, 2021, 23, vi170-vi170.	1.2	0