Katharina Landfester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198954/publications.pdf

Version: 2024-02-01

785 papers 44,679 citations

98 h-index 171 g-index

817 all docs

817 docs citations

times ranked

817

41685 citing authors

#	Article	IF	Citations
1	Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nature Nanotechnology, 2013, 8, 772-781.	15.6	1,817
2	Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnology, 2016, 11, 372-377.	15.6	969
3	Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, 2019, 58, 50-62.	7.2	898
4	Polyreactions in miniemulsions. Progress in Polymer Science, 2002, 27, 689-757.	11.8	738
5	Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 2018, 47, 8572-8610.	18.7	731
6	Miniemulsion Polymerization and the Structure of Polymer and Hybrid Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 4488-4507.	7.2	681
7	Interaction of Nanoparticles with Cells. Biomacromolecules, 2009, 10, 2379-2400.	2.6	518
8	Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano, 2011, 5, 1657-1669.	7.3	516
9	Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules, 2015, 16, 1311-1321.	2.6	497
10	Preparation of Polymeric Nanocapsules by Miniemulsion Polymerization. Langmuir, 2001, 17, 908-918.	1.6	447
11	Polyreactions in Miniemulsions. Macromolecular Rapid Communications, 2001, 22, 896-936.	2.0	401
12	High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chemical Society Reviews, 2012, 41, 5313.	18.7	395
13	Novel approaches to polymer blends based on polymer nanoparticles. Nature Materials, 2003, 2, 408-412.	13.3	394
14	Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes. Macromolecular Chemistry and Physics, 2003, 204, 22-31.	1.1	381
15	Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process. Advanced Materials, 2002, 14, 651-655.	11.1	341
16	The Generation of Nanoparticles in Miniemulsions. Advanced Materials, 2001, 13, 765-768.	11.1	339
17	Formulation and Stability Mechanisms of Polymerizable Miniemulsions. Macromolecules, 1999, 32, 5222-5228.	2.2	328
18	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. Angewandte Chemie - International Edition, 2016, 55, 9202-9206.	7.2	326

#	Article	IF	Citations
19	Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization. Langmuir, 2001, 17, 5775-5780.	1.6	318
20	SYNTHESIS OF COLLOIDAL PARTICLES IN MINIEMULSIONS. Annual Review of Materials Research, 2006, 36, 231-279.	4.3	304
21	Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006, 27, 2820-2828.	5.7	279
22	Visible-Light-Promoted Selective Oxidation of Alcohols Using a Covalent Triazine Framework. ACS Catalysis, 2017, 7, 5438-5442.	5.5	261
23	Preparation of Polymer Particles in Nonaqueous Direct and Inverse Miniemulsions. Macromolecules, 2000, 33, 2370-2376.	2.2	257
24	Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells. Macromolecular Bioscience, 2008, 8, 1135-1143.	2.1	256
25	Molecular Structural Design of Conjugated Microporous Poly(Benzooxadiazole) Networks for Enhanced Photocatalytic Activity with Visible Light. Advanced Materials, 2015, 27, 6265-6270.	11.1	242
26	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
27	A Convenient Method to Produce Closeâ€and Nonâ€closeâ€Packed Monolayers using Direct Assembly at the Air–Water Interface and Subsequent Plasmaâ€Induced Size Reduction. Macromolecular Chemistry and Physics, 2011, 212, 1719-1734.	1.1	226
28	Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona. Angewandte Chemie - International Edition, 2016, 55, 8806-8815.	7.2	215
29	Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano, 2011, 5, 9648-9657.	7.3	211
30	Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nature Nanotechnology, 2018, 13, 862-869.	15.6	210
31	Polymeric Nanoreactors for Hydrophilic Reagents Synthesized by Interfacial Polycondensation on Miniemulsion Droplets. Macromolecules, 2007, 40, 3122-3135.	2.2	207
32	Pickering-type stabilized nanoparticles by heterophase polymerization. Chemical Society Reviews, 2013, 42, 6823.	18.7	204
33	Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer, 2012, 53, 5209-5231.	1.8	203
34	Antibacterial Surface Coatings from Zinc Oxide Nanoparticles Embedded in Poly(<i>N</i> à€isopropylacrylamide) Hydrogel Surface Layers. Advanced Functional Materials, 2012, 22, 2376-2386.	7.8	203
35	Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. Nanoscale, 2017, 9, 8858-8870.	2.8	203
36	Towards the Generation of Selfâ€Healing Materials by Means of a Reversible Photoâ€induced Approach. Macromolecular Rapid Communications, 2011, 32, 468-473.	2.0	198

#	Article	IF	CITATIONS
37	Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chemical Society Reviews, 2015, 44, 8301-8325.	18.7	196
38	Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale, 2015, 7, 2992-3001.	2.8	193
39	Reactions and Polymerizations at the Liquid–Liquid Interface. Chemical Reviews, 2016, 116, 2141-2169.	23.0	191
40	Encapsulation of Carbon Black by Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 51-60.	1.1	190
41	Redoxâ€Responsive Selfâ€Healing for Corrosion Protection. Advanced Materials, 2013, 25, 6980-6984.	11.1	190
42	Patchy Nanocapsules of Poly(vinylferrocene)-Based Block Copolymers for Redox-Responsive Release. ACS Nano, 2012, 6, 9042-9049.	7.3	183
43	How Shape Influences Uptake: Interactions of Anisotropic Polymer Nanoparticles and Human Mesenchymal Stem Cells. Small, 2012, 8, 2222-2230.	5.2	180
44	From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography. Soft Matter, 2012, 8, 4044-4061.	1.2	177
45	Preparation of Fluorescent Carboxyl and Amino Functionalized Polystyrene Particles by Miniemulsion Polymerization as Markers for Cells. Macromolecular Chemistry and Physics, 2005, 206, 2440-2449.	1.1	174
46	Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials, 2010, 31, 9015-9022.	5.7	173
47	Miniemulsion Polymerization with Cationic and Nonionic Surfactants:Â A Very Efficient Use of Surfactants for Heterophase Polymerization. Macromolecules, 1999, 32, 2679-2683.	2.2	171
48	Redox Responsive Release of Hydrophobic Self-Healing Agents from Polyaniline Capsules. Journal of the American Chemical Society, 2013, 135, 14198-14205.	6.6	170
49	Asymmetric Covalent Triazine Framework for Enhanced Visibleâ€Light Photoredox Catalysis via Energy Transfer Cascade. Angewandte Chemie - International Edition, 2018, 57, 8316-8320.	7.2	169
50	Evidence for the preservation of the particle identity in miniemulsion polymerization. Macromolecular Rapid Communications, 1999, 20, 81-84.	2.0	166
51	Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions. Beilstein Journal of Nanotechnology, 2014, 5, 2403-2412.	1.5	165
52	The Generation of "Armored Latexes―and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes. Advanced Materials, 2001, 13, 500-503.	11.1	163
53	Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein Journal of Organic Chemistry, 2010, 6, 1132-1148.	1.3	161
54	Miniemulsion polymerization: applications and new materials. Macromolecular Symposia, 2000, 151, 549-555.	0.4	160

#	Article	IF	CITATIONS
55	High Molecular Weight Polyurethane and Polymer Hybrid Particles in Aqueous Miniemulsion. Macromolecules, 2003, 36, 5119-5125.	2.2	159
56	Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications. Journal of Materials Chemistry A, 2015, 3, 16064-16071.	5.2	157
57	Miniemulsions for Nanoparticle Synthesis. Topics in Current Chemistry, 2003, , 75-123.	4.0	156
58	From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. Journal of Polymer Science Part A, 2010, 48, 493-515.	2.5	155
59	Synthesis of Polyaniline Particles via Inverse and Direct Miniemulsion. Macromolecules, 2003, 36, 3967-3973.	2.2	154
60	Waferâ€Scale Fabrication of Ordered Binary Colloidal Monolayers with Adjustable Stoichiometries. Advanced Functional Materials, 2011, 21, 3064-3073.	7.8	154
61	Title is missing!. Macromolecular Chemistry and Physics, 2002, 203, 1965-1973.	1.1	153
62	Biodegradable lignin nanocontainers. RSC Advances, 2014, 4, 11661-11663.	1.7	152
63	The challenges of oral drug delivery via nanocarriers. Drug Delivery, 2018, 25, 1694-1705.	2.5	151
64	Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chemical Communications, 2010, 46, 6651.	2.2	149
65	A Nanoparticle Approach To Control the Phase Separation in Polyfluorene Photovoltaic Devices. Macromolecules, 2004, 37, 4882-4890.	2.2	144
66	Protein corona change the drug release profile of nanocarriers: The "overlooked―factor at the nanobio interface. Colloids and Surfaces B: Biointerfaces, 2014, 123, 143-149.	2.5	144
67	Photocatalytic Suzuki Coupling Reaction Using Conjugated Microporous Polymer with Immobilized Palladium Nanoparticles under Visible Light. Chemistry of Materials, 2015, 27, 1921-1924.	3.2	142
68	Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 2016, 85, 78-87.	5.7	141
69	The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials, 2010, 31, 5063-5071.	5.7	140
70	Carbohydrateâ€Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona. Angewandte Chemie - International Edition, 2015, 54, 7436-7440.	7.2	137
71	Encapsulated magnetite particles for biomedical application. Journal of Physics Condensed Matter, 2003, 15, S1345-S1361.	0.7	136
72	BSA Adsorption on Differently Charged Polystyrene Nanoparticles using Isothermal Titration Calorimetry and the Influence on Cellular Uptake. Macromolecular Bioscience, 2011, 11, 628-638.	2.1	135

#	Article	IF	Citations
73	Carboxylated Superparamagnetic Iron Oxide Particles Label Cells Intracellularly Without Transfection Agents. Molecular Imaging and Biology, 2008, 10, 138-146.	1.3	133
74	Photocatalytic Selective Bromination of Electron-Rich Aromatic Compounds Using Microporous Organic Polymers with Visible Light. ACS Catalysis, 2016, 6, 1113-1121.	5 . 5	133
75	Convenient Synthesis of Fluorinated Latexes and Coreâ [°] 'Shell Structures by Miniemulsion Polymerization. Macromolecules, 2002, 35, 1658-1662.	2.2	130
76	Isothermal titration calorimetry as a complementary method for investigating nanoparticle–protein interactions. Nanoscale, 2019, 11, 19265-19273.	2.8	126
77	Crystallization in Miniemulsion Droplets. Journal of Physical Chemistry B, 2003, 107, 5088-5094.	1.2	124
78	Preparation of Biodegradable Polymer Nanoparticles by Miniemulsion Technique and Their Cell Interactions. Macromolecular Bioscience, 2008, 8, 127-139.	2.1	124
79	Highly porous conjugated polymers for selective oxidation of organic sulfides under visible light. Chemical Communications, 2014, 50, 8177-8180.	2,2	124
80	Polyaddition in miniemulsions: A new route to polymer dispersions. Macromolecular Chemistry and Physics, 2000, 201, 1-5.	1.1	122
81	Enzyme Responsive Hyaluronic Acid Nanocapsules Containing Polyhexanide and Their Exposure to Bacteria To Prevent Infection. Biomacromolecules, 2013, 14, 1103-1112.	2.6	122
82	Polypeptoid- <i>block</i> -polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques. Biomacromolecules, 2014, 15, 548-557.	2.6	122
83	Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27615-27623.	4.0	122
84	Effect of Hydrophilic Comonomer and Surfactant Type on the Colloidal Stability and Size Distribution of Carboxyl- and Amino-Functionalized Polystyrene Particles Prepared by Miniemulsion Polymerization. Langmuir, 2007, 23, 5367-5376.	1.6	120
85	Organic/Inorganic Composite Latexes: The Marriage of Emulsion Polymerization and Inorganic Chemistry. Advances in Polymer Science, 2010, , 53-123.	0.4	120
86	Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake. Nanoscale, 2016, 8, 5526-5536.	2.8	120
87	Polymer Micro―and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromolecular Bioscience, 2014, 14, 458-477.	2.1	117
88	Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy. ACS Nano, 2014, 8, 8198-8207.	7.3	116
89	Organic Light-Emitting Devices Fabricated from Semiconducting Nanospheres. Advanced Materials, 2003, 15, 800-804.	11.1	115
90	Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. Journal of Materials Chemistry A, 2016, 4, 7555-7559.	5.2	114

#	Article	IF	Citations
91	Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules, 2010, 11, 748-753.	2.6	112
92	Hyperbranched Unsaturated Polyphosphates as a Protective Matrix for Long-Term Photon Upconversion in Air. Journal of the American Chemical Society, 2014, 136, 11057-11064.	6.6	109
93	The Influence of Nanoparticle Shape on Protein Corona Formation. Small, 2020, 16, e2000285.	5.2	108
94	Inkjet printed surface cell light-emitting devices from a water-based polymer dispersion. Organic Electronics, 2008, 9, 164-170.	1.4	107
95	Fibrous Nanozyme Dressings with Catalase-Like Activity for H ₂ O ₂ Reduction To Promote Wound Healing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38024-38031.	4.0	107
96	Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chemical Society Reviews, 2016, 45, 4668-4689.	18.7	105
97	Hybrid polymer latexes. Progress in Polymer Science, 2007, 32, 1439-1461.	11.8	102
98	Regenerative Nanoâ€Hybrid Coating Tailored for Autonomous Corrosion Protection. Advanced Materials, 2015, 27, 3825-3830.	11.1	101
99	Exploiting the biomolecular corona: pre-coating of nanoparticles enables controlled cellular interactions. Nanoscale, 2018, 10, 10731-10739.	2.8	101
100	Encapsulation of Selfâ€Healing Agents in Polymer Nanocapsules. Small, 2012, 8, 2954-2958.	5.2	100
101	One-step preparation of polyurethane dispersions by miniemulsion polyaddition. Journal of Polymer Science Part A, 2001, 39, 2520-2524.	2.5	98
102	Controlled Release from Polyurethane Nanocapsules via pH-, UV-Light- or Temperature-Induced Stimuli. Macromolecules, 2010, 43, 5083-5093.	2,2	98
103	Annihilation Upconversion in Cells by Embedding the Dye System in Polymeric Nanocapsules. Macromolecular Bioscience, 2011, 11, 772-778.	2.1	98
104	Phase Separation of Binary Blends in Polymer Nanoparticles. Small, 2007, 3, 1041-1048.	5.2	96
105	Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale, 2011, 3, 2028.	2.8	96
106	A conjugated porous poly-benzobisthiadiazole network for a visible light-driven photoredox reaction. Journal of Materials Chemistry A, 2014, 2, 18720-18724.	5.2	96
107	Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes. Nano Letters, 2017, 17, 6816-6821.	4.5	96
108	Structural Studies of Nanophase-Separated Poly(2-hydroxyethyl methacrylate)-l-polyisobutylene Amphiphilic Conetworks by Solid-State NMR and Small-Angle X-ray Scattering. Macromolecules, 2003, 36, 9107-9114.	2.2	95

#	Article	IF	CITATIONS
109	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	5.2	95
110	Miniemulsion Polymerization as a Means to Encapsulate Organic and Inorganic Materials. Advances in Polymer Science, 2010, , 185-236.	0.4	94
111	Aminoâ€Acidâ€Based Chiral Nanoparticles for Enantioselective Crystallization. Advanced Materials, 2015, 27, 2728-2732.	11.1	94
112	Morphology-Controlled Synthesis of Lignin Nanocarriers for Drug Delivery and Carbon Materials. ACS Biomaterials Science and Engineering, 2017, 3, 2375-2383.	2.6	94
113	Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials, 2017, 115, 1-8.	5.7	94
114	Synthesis and Optimization of Gelatin Nanoparticles Using the Miniemulsion Process. Biomacromolecules, 2008, 9, 2383-2389.	2.6	93
115	Porous Anatase Nanoparticles with High Specific Surface Area Prepared by Miniemulsion Technique. Chemistry of Materials, 2008, 20, 5768-5780.	3.2	92
116	Structural Design Principle of Smallâ€Molecule Organic Semiconductors for Metalâ€Free, Visibleâ€Lightâ€Promoted Photocatalysis. Angewandte Chemie - International Edition, 2016, 55, 9783-9787.	7.2	92
117	Omeprazole Inhibits Proliferation and Modulates Autophagy in Pancreatic Cancer Cells. PLoS ONE, 2011, 6, e20143.	1.1	91
118	TiO ₂ Anatase Nanoparticle Networks: Synthesis, Structure, and Electrochemical Performance. Small, 2011, 7, 1690-1696.	5.2	91
119	Characterization of Interfaces in Coreâ 'Shell Polymers by Advanced Solid-State NMR Methods. Macromolecules, 1996, 29, 5972-5980.	2.2	90
120	Metastable and Stable Morphologies during Crystallization of Alkanes in Miniemulsion Droplets. Langmuir, 2003, 19, 5996-6003.	1.6	90
121	Weak Hydrogen Bonds as a Structural Motif for Two-Dimensional Assemblies of Oligopyridines on Highly Oriented Pyrolytic Graphite:Â An STM Investigation. Journal of Physical Chemistry B, 2005, 109, 21015-21027.	1.2	90
122	Encapsulation of Organic Pigment Particles Via Miniemulsion Polymerization. Macromolecular Materials and Engineering, 2007, 292, 1111-1125.	1.7	90
123	Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process. Journal of Physics Condensed Matter, 2006, 18, S2581-S2594.	0.7	89
124	Encapsulation by Miniemulsion Polymerization. Advances in Polymer Science, 2010, , 1-49.	0.4	89
125	Suppressing Unspecific Cell Uptake for Targeted Delivery Using Hydroxyethyl Starch Nanocapsules. Biomacromolecules, 2012, 13, 2704-2715.	2.6	89
126	Dual Stimuli-Responsive Poly(2-hydroxyethyl methacrylate- <i>co</i> -methacrylic acid) Microgels Based on Photo-Cleavable Cross-Linkers: pH-Dependent Swelling and Light-Induced Degradation. Macromolecules, 2011, 44, 9758-9772.	2.2	88

#	Article	IF	Citations
127	Hydrophilicity Regulates the Stealth Properties of Polyphosphoesterâ€Coated Nanocarriers. Angewandte Chemie - International Edition, 2018, 57, 5548-5553.	7.2	88
128	Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Letters, 2021, 21, 1591-1598.	4.5	87
129	Kinetics of Miniemulsion Polymerization As Revealed by Calorimetry. Macromolecules, 2000, 33, 4682-4689.	2.2	86
130	Crystallization of Poly(ethylene oxide) Confined in Miniemulsion Droplets. Macromolecules, 2003, 36, 4037-4041.	2.2	86
131	Anionic Polymerization of $\hat{l}\mu$ -Caprolactam in Miniemulsion: \hat{A} Synthesis and Characterization of Polyamide-6 Nanoparticles. Macromolecules, 2005, 38, 6882-6887.	2.2	85
132	Micellar carrier for triplet–triplet annihilation-assisted photon energy upconversion in a water environment. New Journal of Physics, 2011, 13, 083035.	1.2	84
133	Mass Spectrometry and Imaging Analysis of Nanoparticle-Containing Vesicles Provide a Mechanistic Insight into Cellular Trafficking. ACS Nano, 2014, 8, 10077-10088.	7.3	84
134	Synthesis of Chitosan-Stabilized Polymer Dispersions, Capsules, and Chitosan Grafting Products via Miniemulsion. Biomacromolecules, 2002, 3, 475-481.	2.6	83
135	Triplet– <scp>T</scp> riplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepâ€ <scp>R</scp> ed Light. Macromolecular Bioscience, 2013, 13, 1422-1430.	2.1	83
136	Targeted lipid-coated nanoparticles: Delivery of tumor necrosis factor-functionalized particles to tumor cells. Journal of Controlled Release, 2009, 137, 69-77.	4.8	82
137	Bio-Based Lignin Nanocarriers Loaded with Fungicides as a Versatile Platform for Drug Delivery in Plants. Biomacromolecules, 2020, 21, 2755-2763.	2.6	82
138	Photo-sensitive PMMA microgels: light-triggered swelling and degradation. Soft Matter, 2011, 7, 1426-1440.	1.2	81
139	Unsaturated Polyphosphoesters via Acyclic Diene Metathesis Polymerization. Macromolecules, 2012, 45, 8511-8518.	2.2	81
140	Ordered Arrays of Gold Nanostructures from Interfacially Assembled Au@PNIPAM Hybrid Nanoparticles. Langmuir, 2012, 28, 8985-8993.	1.6	81
141	Recent developments in miniemulsions― formation and stability mechanisms. Macromolecular Symposia, 2000, 150, 171-178.	0.4	80
142	Disposition of Charged Nanoparticles after Their Topical Application to the Skin. Skin Pharmacology and Physiology, 2010, 23, 117-123.	1,1	80
143	Heterophase Photocatalysts from Waterâ€Soluble Conjugated Polyelectrolytes: An Example of Selfâ€Initiation under Visible Light. Angewandte Chemie - International Edition, 2015, 54, 14549-14553.	7.2	80
144	Photocatalytic Regioselective and Stereoselective [2 + 2] Cycloaddition of Styrene Derivatives Using a Heterogeneous Organic Photocatalyst. ACS Catalysis, 2017, 7, 3097-3101.	5 . 5	80

#	Article	IF	Citations
145	Polymeric Nanocapsules Containing an Antiseptic Agent Obtained by Controlled Nanoprecipitation onto Water-in-Oil Miniemulsion Droplets. Macromolecular Bioscience, 2006, 6, 33-40.	2.1	79
146	Plasmon Hybridization in Stacked Double Crescents Arrays Fabricated by Colloidal Lithography. Nano Letters, 2011, 11, 446-454.	4.5	79
147	pH-Sensitive Nanocapsules with Barrier Properties: Fragrance Encapsulation and Controlled Release. Macromolecules, 2014, 47, 5768-5773.	2.2	79
148	Conjugated Microporous Poly(Benzochalcogenadiazole)s for Photocatalytic Oxidative Coupling of Amines under Visible Light. ChemSusChem, 2015, 8, 3459-3464.	3.6	77
149	Biomimetic Hydroxyapatite Crystallization in Gelatin Nanoparticles Synthesized Using a Miniemulsion Process. Advanced Functional Materials, 2008, 18, 2221-2227.	7.8	76
150	Concentration and Coverage Dependent Adlayer Structures: From Two-Dimensional Networks to Rotation in a Bearing. Journal of Physical Chemistry C, 2010, 114, 1268-1277.	1.5	76
151	Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale, 2017, 9, 2138-2144.	2.8	76
152	Efficient Nanofibrous Membranes for Antibacterial Wound Dressing and UV Protection. ACS Applied Materials & Dressing and UV Protection.	4.0	75
153	Heterogeneous photoredox flow chemistry for the scalable organosynthesis of fine chemicals. Nature Communications, 2020, 11 , 1239 .	5.8	75
154	Inorganic nanoparticles prepared in miniemulsion. Current Opinion in Colloid and Interface Science, 2012, 17, 212-224.	3.4	74
155	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 8392-8398.	1.6	74
156	Amino-functionalized nanoparticles as inhibitors of mTOR and inducers of cell cycle arrest in leukemia cells. Biomaterials, 2014, 35, 1944-1953.	5.7	74
157	Targeted Drug Delivery in Plants: Enzymeâ€Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Advanced Science, 2019, 6, 1802315.	5.6	74
158	Polyester synthesis in aqueous miniemulsion. Polymer, 2003, 44, 2833-2841.	1.8	73
159	Surface-Functionalized Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Hydroxyapatite. Chemistry of Materials, 2009, 21, 2218-2225.	3.2	73
160	Surface-Active Monomer as a Stabilizer for Polyurea Nanocapsules Synthesized via Interfacial Polyaddition in Inverse Miniemulsion. Langmuir, 2009, 25, 12084-12091.	1.6	73
161	Using the Polymeric Ouzo Effect for the Preparation of Polysaccharide-Based Nanoparticles. Langmuir, 2013, 29, 8845-8855.	1.6	73
162	Synthesis of Inorganic and Metallic Nanoparticles by Miniemulsification of Molten Salts and Metals. Chemistry of Materials, 2001, 13, 4681-4685.	3.2	72

#	Article	IF	CITATIONS
163	Synthetic Cells: From Simple Bioâ€Inspired Modules to Sophisticated Integrated Systems. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
164	Incorporation of Nanoparticles into Polymersomes: Size and Concentration Effects. ACS Nano, 2012, 6, 7254-7262.	7.3	71
165	Design and characterization of functionalized silica nanocontainers for self-healing materials. Journal of Materials Chemistry, 2012, 22, 2286-2291.	6.7	71
166	Particle Formation in the Emulsionâ€Solvent Evaporation Process. Small, 2013, 9, 3514-3522.	5.2	71
167	All Organic Nanofibers As Ultralight Versatile Support for Triplet–Triplet Annihilation Upconversion. ACS Macro Letters, 2013, 2, 446-450.	2.3	71
168	Cellulose Nanofiber/Nanocrystal Reinforced Capsules: A Fast and Facile Approach Toward Assembly of Liquid-Core Capsules with High Mechanical Stability. Biomacromolecules, 2014, 15, 1852-1859.	2.6	71
169	Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. Angewandte Chemie, 2016, 128, 9348-9352.	1.6	70
170	The Transferability from Animal Models to Humans: Challenges Regarding Aggregation and Protein Corona Formation of Nanoparticles. Biomacromolecules, 2018, 19, 374-385.	2.6	70
171	Polymers designed to control nucleation and growth of inorganic crystals from aqueous media. Macromolecular Symposia, 2001, 175, 349-356.	0.4	68
172	Enzymatic Polymerization towards Biodegradable Polyester Nanoparticles. Macromolecular Rapid Communications, 2003, 24, 512-516.	2.0	68
173	Advanced stimuli-responsive polymer nanocapsules with enhanced capabilities for payloads delivery. Polymer Chemistry, 2015, 6, 4197-4205.	1.9	68
174	Mechanical Properties of Poly(dimethylsiloxane)- <i>block</i> -poly(2-methyloxazoline) Polymersomes Probed by Atomic Force Microscopy. Langmuir, 2012, 28, 12629-12636.	1.6	67
175	Hydrophobic Nanocontainers for Stimulus-Selective Release in Aqueous Environments. Macromolecules, 2014, 47, 4876-4883.	2.2	67
176	Decreasing the Alkyl Branch Frequency in Precision Polyethylene: Effect of Alkyl Branch Size on Nanoscale Morphology. Macromolecules, 2012, 45, 3367-3376.	2.2	66
177	Nanoparticle interactions with live cells: Quantitative fluorescence microscopy of nanoparticle size effects. Beilstein Journal of Nanotechnology, 2014, 5, 2388-2397.	1.5	65
178	Enhanced visible light promoted antibacterial efficiency of conjugated microporous polymer nanoparticles via molecular doping. Journal of Materials Chemistry B, 2016, 4, 5112-5118.	2.9	65
179	Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomaterialia, 2018, 76, 217-224.	4.1	65
180	Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer, 2009, 50, 1616-1620.	1.8	64

#	Article	IF	Citations
181	Criteria impacting the cellular uptake of nanoparticles: A study emphasizing polymer type and surfactant effects. Acta Biomaterialia, 2011, 7, 4160-4168.	4.1	64
182	Hierarchically Structured Metal Oxide/Silica Nanofibers by Colloid Electrospinning. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6338-6345.	4.0	64
183	Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochimica Acta, 2013, 565, 95-101.	1.2	64
184	Stimuli-Selective Delivery of two Payloads from Dual Responsive Nanocontainers. Chemistry of Materials, 2014, 26, 3351-3353.	3.2	64
185	Possibilities and Limitations of Different Separation Techniques for the Analysis of the Protein Corona. Angewandte Chemie - International Edition, 2019, 58, 12787-12794.	7.2	64
186	Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022.	7.3	64
187	Etching Masks Based on Miniemulsions: A Novel Route Towards Ordered Arrays of Surface Nanostructures. Advanced Materials, 2007, 19, 1337-1341.	11.1	63
188	Cross-Linked Starch Capsules Containing dsDNA Prepared in Inverse Miniemulsion as "Nanoreactors― for Polymerase Chain Reaction. Biomacromolecules, 2010, 11, 960-968.	2.6	63
189	Synergetic Effect in Triplet–Triplet Annihilation Upconversion: Highly Efficient Multi hromophore Emitter. ChemPhysChem, 2012, 13, 3112-3115.	1.0	63
190	The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Frontiers in Immunology, 2018, 9, 1760.	2.2	63
191	Characterization of interphases in coreâ€"shell latexes by solid-state NMR. Acta Polymerica, 1998, 49, 451-464.	1.3	62
192	Nanocapsules Synthesized by Miniemulsion Technique for Application as New Contrast Agent Materials. Macromolecular Chemistry and Physics, 2007, 208, 2229-2241.	1.1	62
193	Fluorescent Polyurethane Nanocapsules Prepared via Inverse Miniemulsion: Surface Functionalization for Use as Biocarriers. Macromolecular Bioscience, 2009, 9, 575-584.	2.1	62
194	Surfactant Concentration Regime in Miniemulsion Polymerization for the Formation of MMA Nanodroplets by High-Pressure Homogenization. Langmuir, 2011, 27, 2279-2285.	1.6	62
195	Making dry fertile: a practical tour of non-aqueous emulsions and miniemulsions, their preparation and some applications. Soft Matter, 2011, 7, 11054.	1.2	62
196	Efficient Encapsulation of Self-Healing Agents in Polymer Nanocontainers Functionalized by Orthogonal Reactions. Macromolecules, 2012, 45, 6324-6332.	2.2	62
197	Synthesis and Characterization of Highly Cross-Linked, Monodisperse Coreâ^'Shell and Inverted Coreâ^'Shell Colloidal Particles. Polystyrene/Poly(tert-butyl Acrylate) Coreâ^'Shell and Inverse Coreâ^'Shell Particles. Macromolecules, 1999, 32, 4508-4518.	2.2	61
198	The polymerization of acrylonitrile in miniemulsions: "Crumpled latex particles―or polymer nanocrystals. Macromolecular Rapid Communications, 2000, 21, 820-824.	2.0	61

#	Article	IF	CITATIONS
199	Synthesis of Mesoporous Silica Particles and Capsules by Miniemulsion Technique. Chemistry of Materials, 2009, 21, 5088-5098.	3.2	61
200	Characterization via Two-Color STED Microscopy of Nanostructured Materials Synthesized by Colloid Electrospinning. Langmuir, 2011, 27, 7132-7139.	1.6	61
201	Metal Oxide/Polymer Hybrid Nanoparticles with Versatile Functionality Prepared by Controlled Surface Crystallization. Advanced Functional Materials, 2013, 23, 451-466.	7.8	61
202	Beyond the protein corona – lipids matter for biological response of nanocarriers. Acta Biomaterialia, 2018, 71, 420-431.	4.1	61
203	The Softer and More Hydrophobic the Better: Influence of the Side Chain of Polymethacrylate Nanoparticles for Cellular Uptake. Macromolecular Bioscience, 2010, 10, 1034-1042.	2.1	60
204	Preparation of Microporous Melamineâ€based Polymer Networks in an Anhydrous Highâ€Temperature Miniemulsion. Macromolecular Rapid Communications, 2011, 32, 1798-1803.	2.0	60
205	Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 18368-18373.	7.2	60
206	Functional Nanoparticles from Dendritic Precursors: Hierarchical Assembly in Miniemulsion. Macromolecules, 2009, 42, 556-559.	2,2	59
207	Benzoxazine Miniemulsions Stabilized with Polymerizable Nonionic Benzoxazine Surfactants. Macromolecules, 2010, 43, 8933-8941.	2.2	59
208	Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 265-274.	2.0	59
209	Nanocapsules with specific targeting and release properties using miniemulsion polymerization (b). Expert Opinion on Drug Delivery, 2013, 10, 593-609.	2.4	59
210	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	2.6	59
211	Colloidal Polymers with Controlled Sequence and Branching Constructed from Magnetic Field Assembled Nanoparticles. ACS Nano, 2015, 9, 2720-2728.	7.3	59
212	Controlled Supramolecular Assembly Inside Living Cells by Sequential Multistaged Chemical Reactions. Journal of the American Chemical Society, 2020, 142, 15780-15789.	6.6	59
213	The First Step into the Brain: Uptake of NIOâ€PBCA Nanoparticles by Endothelial Cells inâ€vitro and inâ€vivo, and Direct Evidence for their Blood–Brain Barrier Permeation. ChemMedChem, 2008, 3, 1395-1403.	1.6	58
214	Fluorescent Superparamagnetic Polylactide Nanoparticles by Combination of Miniemulsion and Emulsion/Solvent Evaporation Techniques. Macromolecular Chemistry and Physics, 2009, 210, 961-970.	1.1	58
215	Synthesis of phosphonate-functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization. Colloid and Polymer Science, 2009, 287, 1261-1271.	1.0	58
216	Enzymatically degradable nanogels by inverse miniemulsion copolymerization of acrylamide with dextran methacrylates as crosslinkers. Polymer Chemistry, 2012, 3, 204-216.	1.9	57

#	Article	IF	CITATIONS
217	Solid state polycondensation within cyclodextrin channels leading to watersoluble polyamide rotaxanes. Tetrahedron, 1997, 53, 15575-15592.	1.0	56
218	Crystallization of Dyes by Directed Aggregation of Colloidal Intermediates:Â A Model Case. Langmuir, 2004, 20, 957-961.	1.6	56
219	Preparation of Nylon 6 Nanoparticles and Nanocapsules by Two Novel Miniemulsion/Solvent Displacement Hybrid Techniques. Macromolecular Chemistry and Physics, 2007, 208, 457-466.	1.1	56
220	Encapsulation of a Fragrance via Miniemulsion Polymerization for Temperature ontrolled Release. Macromolecular Chemistry and Physics, 2009, 210, 411-420.	1.1	56
221	Preparation of Hybrid Latex Particles and Core–Shell Particles Through the Use of Controlled Radical Polymerization Techniques in Aqueous Media. Advances in Polymer Science, 2010, , 125-183.	0.4	56
222	Wellâ€Defined Nanofibers with Tunable Morphology from Spherical Colloidal Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 10107-10111.	7.2	56
223	Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. Biomacromolecules, 2019, 20, 2989-2999.	2.6	56
224	A Route to Nonfunctionalized and Functionalized Poly(n-butylcyanoacrylate) Nanoparticles:Â Preparation in Miniemulsion. Macromolecules, 2007, 40, 928-938.	2.2	55
225	Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion. Nanotechnology, 2010, 21, 405603.	1.3	55
226	Phase behavior of binary mixtures of block copolymers and a non-solvent in miniemulsion droplets as single and double nanoconfinement. Soft Matter, 2011, 7, 10219.	1.2	55
227	Synthesis of raspberryâ€ike organic–inorganic hybrid nanocapsules via pickering miniemulsion polymerization: Colloidal stability and morphology. Journal of Polymer Science Part A, 2011, 49, 2382-2394.	2.5	55
228	Hierarchically porous π-conjugated polyHIPE as a heterogeneous photoinitiator for free radical polymerization under visible light. Polymer Chemistry, 2014, 5, 3559-3562.	1.9	55
229	Stabilization of Calcium Oxalate Metastable Phases by Oligo(<scp>I</scp> -glutamic acid): Effect of Peptide Chain Length. Crystal Growth and Design, 2011, 11, 1880-1890.	1.4	54
230	Direct visualization of the interfacial position of colloidal particles and their assemblies. Nanoscale, 2014, 6, 6879-6885.	2.8	54
231	Miniemulsion Copolymerization of Methyl Methacrylate and Butyl Acrylate by Ultrasonic Initiation. Macromolecules, 2005, 38, 6346-6351.	2.2	53
232	Synthesis of polymer particles and nanocapsules stabilized with PEO/PPO containing polymerizable surfactants in miniemulsion. Colloid and Polymer Science, 2006, 284, 780-787.	1.0	53
233	Tailoring the stealth properties of biocompatible polysaccharide nanocontainers. Biomaterials, 2015, 49, 125-134.	5.7	53
234	Oncolytic Nanoreactors Producing Hydrogen Peroxide for Oxidative Cancer Therapy. Nano Letters, 2020, 20, 526-533.	4.5	52

#	Article	IF	CITATIONS
235	Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chemical Society Reviews, 2022, 51, 128-152.	18.7	52
236	Miniemulsion Droplets as Single Molecule Nanoreactors for Polymerase Chain Reaction. Biomacromolecules, 2005, 6, 1824-1828.	2.6	51
237	Effect of functionalised fluorescence-labelled nanoparticles on mesenchymal stem cell differentiation. Biomaterials, 2010, 31, 2064-2071.	5.7	51
238	A Conjugated Microporous Polymer for Palladiumâ€Free, Visible Lightâ€Promoted Photocatalytic Stilleâ€Type Coupling Reactions. Advanced Science, 2017, 4, 1700101.	5.6	51
239	Particle size distribution in mini-emulsion polymerization. Comptes Rendus Chimie, 2003, 6, 1337-1342.	0.2	50
240	Enantioselective Enzymatic Reactions in Miniemulsions as Efficient "Nanoreactors― Angewandte Chemie - International Edition, 2006, 45, 1645-1648.	7.2	50
241	Preparation of Narrowly Size Distributed Metal-Containing Polymer Latexes by Miniemulsion and Other Emulsion Techniques: Applications for Nanolithography. Chemistry of Materials, 2009, 21, 1750-1760.	3.2	50
242	Nanocontainers in and onto Nanofibers. Accounts of Chemical Research, 2016, 49, 816-823.	7.6	50
243	Competitive Adsorption of the Anionic Surfactant SLS and the Nonionic Surfactant Triton X-405 on Polystyrene Latex Particles. Langmuir, 2000, 16, 7905-7913.	1.6	49
244	Fluorescence Correlation Spectroscopy Directly Monitors Coalescence During Nanoparticle Preparation. Nano Letters, 2012, 12, 6012-6017.	4.5	49
245	Liquid Crystal Nanoparticles Prepared as Miniemulsions. Langmuir, 2006, 22, 4504-4511.	1.6	48
246	Synthesis of Narrowly Size-Distributed Thermosensitive Poly(<i>N</i> -isopropylacrylamide) Nanocapsules in Inverse Miniemulsion. Macromolecules, 2010, 43, 6353-6360.	2.2	48
247	Preparation of Raspberry-like Nanocapsules by the Combination of Pickering Emulsification and Solvent Displacement Technique. Langmuir, 2011, 27, 6689-6700.	1.6	48
248	Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. Journal of Materials Chemistry B, 2014, 2, 1298.	2.9	48
249	Surfactant-Free Polyurethane Nanocapsules via Inverse Pickering Miniemulsion. Langmuir, 2015, 31, 3784-3788.	1.6	48
250	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie - International Edition, 2020, 59, 20008-20016.	7.2	48
251	Characterization of Partially Hydrolyzed Poly(vinyl alcohol). Effect of Poly(vinyl alcohol) Molecular Architecture on Aqueous Phase Conformation. Macromolecules, 2003, 36, 9477-9484.	2.2	47
252	Synthesis and Self-Organization of \hat{l}_{\pm} , \hat{l}_{\pm} %-Substituted Oligothiophenes with Long, Branched Alkyl Substituents. Chemistry of Materials, 2007, 19, 1070-1075.	3.2	47

#	Article	IF	CITATIONS
253	Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants. European Polymer Journal, 2010, 46, 1671-1678.	2.6	47
254	Enzyme-catalyzed polymerizations at higher temperatures: Synthetic methods to produce polyamides and new poly(amide-co-ester)s. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 94-105.	1.8	47
255	Recent Advances in the Emulsion Solvent Evaporation Technique for the Preparation of Nanoparticles and Nanocapsules. Advances in Polymer Science, 2013, , 329-344.	0.4	47
256	Poly(phosphonate)s via Olefin Metathesis: Adjusting Hydrophobicity and Morphology. Macromolecules, 2014, 47, 4884-4893.	2.2	47
257	Double Redox-Responsive Release of Encoded and Encapsulated Molecules from Patchy Nanocapsules. Small, 2015, 11, 2995-2999.	5.2	47
258	Natural liposomes and synthetic polymeric structures for biomedical applications. Biochemical and Biophysical Research Communications, 2015, 468, 411-418.	1.0	47
259	Dualâ€Responsive Photocatalytic Polymer Nanogels. Angewandte Chemie - International Edition, 2019, 58, 10567-10571.	7.2	47
260	Selfâ€Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. Advanced Biology, 2019, 3, e1800324.	3.0	47
261	Conjugated Polymer Hydrogel Photocatalysts with Expandable Photoactive Sites in Water. Chemistry of Materials, 2019, 31, 3381-3387.	3.2	47
262	Comblike Polymers with Octadecyl Side Chain and Carboxyl Functional Sites:  Scope for Efficient Use in Miniemulsion Polymerization. Macromolecules, 2000, 33, 9228-9232.	2.2	46
263	Polymer Surface Melting Mediated by Capillary Waves. Physical Review Letters, 2004, 93, .	2.9	46
264	Cellular Uptake Behavior of Unfunctionalized and Functionalized PBCA Particles Prepared in a Miniemulsion. Macromolecular Bioscience, 2007, 7, 883-896.	2.1	46
265	CO2 responsive reversible aggregation of nanoparticles and formation of nanocapsules with an aqueous core. Soft Matter, 2012, 8, 11687.	1.2	46
266	Facile and Largeâ€6cale Fabrication of Anisometric Particles from Fibers Synthesized by Colloidâ€Electrospinning. Small, 2012, 8, 144-153.	5.2	46
267	Synthesis and antibacterial properties of a hybrid of silver–potato starch nanocapsules by miniemulsion/polyaddition polymerization. Journal of Materials Chemistry B, 2014, 2, 1838.	2.9	46
268	Nanozymes in Nanofibrous Mats with Haloperoxidase-like Activity To Combat Biofouling. ACS Applied Materials & Distribution (1988). 10, 44722-44730.	4.0	46
269	Miniemulsification of Monomer-Resin Hybrid Systems. Industrial & Engineering Chemistry Research, 2008, 47, 6289-6297.	1.8	45
270	Enzymatic―and lightâ€degradable hybrid nanogels: Crosslinking of polyacrylamide with acrylateâ€functionalized Dextrans containing photocleavable linkers. Journal of Polymer Science Part A, 2012, 50, 1062-1075.	2.5	45

#	Article	IF	Citations
271	Probing Bioinspired Transport of Nanoparticles into Polymersomes. Angewandte Chemie - International Edition, 2012, 51, 4613-4617.	7.2	45
272	Submicron hybrid vesicles consisting of polymer–lipid and polymer–cholesterol blends. Soft Matter, 2013, 9, 5883.	1.2	45
273	Biodegradable Protein Nanocontainers. Biomacromolecules, 2015, 16, 815-821.	2.6	45
274	Interleukin-2 Functionalized Nanocapsules for T Cell-Based Immunotherapy. ACS Nano, 2016, 10, 9216-9226.	7.3	45
275	A fixed-bed photoreactor using conjugated nanoporous polymer-coated glass fibers for visible light-promoted continuous photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 3792-3797.	5.2	45
276	Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. Journal of Extracellular Vesicles, 2021, 10, e12081.	5.5	45
277	One-Pot Production of Fluorescent Surface-Labeled Polymeric Nanoparticles via Miniemulsion Polymerization with Bodipy Surfmers. Macromolecules, 2012, 45, 3787-3796.	2.2	44
278	(Oligo)mannose functionalized hydroxyethyl starch nanocapsules: en route to drug delivery systems with targeting properties. Journal of Materials Chemistry B, 2013, 1, 4338.	2.9	44
279	Colloidal systems for crystallization processes from liquid phase. CrystEngComm, 2013, 15, 2175.	1.3	44
280	A new approach for crystallization of copper(<scp>ii</scp>) oxide hollow nanostructures with superior catalytic and magnetic response. Nanoscale, 2015, 7, 19250-19258.	2.8	44
281	Bandgap Engineering of Conjugated Nanoporous Polyâ€benzobisthiadiazoles <i>via</i> Copolymerization for Enhanced Photocatalytic 1,2,3,4â€Tetrahydroquinoline Synthesis under Visible Light. Advanced Synthesis and Catalysis, 2016, 358, 2576-2582.	2.1	44
282	Water Compatible Conjugated Microporous Polyazulene Networks as Visible‣ight Photocatalysts in Aqueous Medium. ChemCatChem, 2016, 8, 694-698.	1.8	44
283	Protein machineries defining pathways of nanocarrier exocytosis and transcytosis. Acta Biomaterialia, 2018, 71, 432-443.	4.1	44
284	Modular Approach for the Design of Smart Polymeric Nanocapsules. Macromolecular Rapid Communications, 2019, 40, e1800577.	2.0	44
285	Saccharide modified silica particles by enzymatic grafting. Macromolecular Rapid Communications, 1997, 18, 927-938.	2.0	43
286	Polydimethylsiloxane latexes and copolymers by polymerization and polyaddition in miniemulsion. Polymer, 2005, 46, 9892-9898.	1.8	43
287	The Role of Residue Acidity on the Stabilization of Vaterite by Amino Acids and Oligopeptides. Crystal Growth and Design, 2014, 14, 1077-1085.	1.4	43
288	Controlling the Polymer Microstructure in Anionic Polymerization by Compartmentalization. Angewandte Chemie - International Edition, 2018, 57, 2483-2487.	7.2	43

#	Article	IF	CITATIONS
289	Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances. Nanoscale, 2011, 3, 4788.	2.8	42
290	Photoreactive Nanoparticles as Nanometric Building Blocks for the Generation of Selfâ€Healing Hydrogel Thin Films. Chemistry - A European Journal, 2011, 17, 12465-12475.	1.7	42
291	Preparation of Mesoporous Submicrometer Silica Capsules via an Interfacial Sol–Gel Process in Inverse Miniemulsion. Langmuir, 2012, 28, 7023-7032.	1.6	42
292	Porous conjugated polymer via metal-free synthesis for visible light-promoted oxidative hydroxylation of arylboronic acids. Polymer, 2017, 126, 291-295.	1.8	42
293	Protein denaturation caused by heat inactivation detrimentally affects biomolecular corona formation and cellular uptake. Nanoscale, 2018, 10, 21096-21105.	2.8	42
294	Photocatalytic Partial Oxidation of 5â€Hydroxymethylfurfural (HMF) to 2,5â€Diformylfuran (DFF) Over a Covalent Triazine Framework in Water. ChemPhotoChem, 2020, 4, 571-576.	1.5	42
295	Tetraaryltetraanthra[2,3]porphyrins: Synthesis, Structure, and Optical Properties. Journal of Organic Chemistry, 2012, 77, 11119-11131.	1.7	41
296	Surface Roughness and Charge Influence the Uptake of Nanoparticles: Fluorescently Labeled Pickeringâ€Type Versus Surfactantâ€Stabilized Nanoparticles. Macromolecular Bioscience, 2012, 12, 1459-1471.	2.1	41
297	Design, Synthesis, and Miniemulsion Polymerization of New Phosphonate Surfmers and Application Studies of the Resulting Nanoparticles as Model Systems for Biomimetic Mineralization and Cellular Uptake. Chemistry - A European Journal, 2012, 18, 5201-5212.	1.7	41
298	Reversible Photocycloadditions, a Powerful Tool for Tailoring (Nano)Materials. Macromolecular Chemistry and Physics, 2012, 213, 144-156.	1.1	41
299	Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomaterials Science, 2013, 1, 470.	2.6	41
300	Visible light active nanofibrous membrane for antibacterial wound dressing. Nanoscale Horizons, 2018, 3, 439-446.	4.1	41
301	Microheterogeneities of core-shell latexes probed by 1H spin diffusion and transmission electron microscopy. Macromolecular Chemistry and Physics, 1995, 196, 985-993.	1.1	40
302	Intelligent Gels and Cryogels with Entrapped Emulsions. Langmuir, 2008, 24, 4467-4469.	1.6	40
303	Functional Hybrid Materials with Polymer Nanoparticles as Templates. Chemistry - A European Journal, 2010, 16, 9398-9412.	1.7	40
304	Nanostructured Coatings by Adhesion of Phosphonated Polystyrene Particles onto Titanium Surface for Implant Material Applications. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2421-2428.	4.0	40
305	Advanced chemically induced phase separation in thermosets: Polybenzoxazines toughened with multifunctional thermoplastic main-chain benzoxazine prepolymers. Polymer, 2011, 52, 3277-3287.	1.8	40
306	Copolymers Structures Tailored for the Preparation of Nanocapsules. Macromolecules, 2013, 46, 573-579.	2.2	40

#	Article	IF	CITATIONS
307	Drug delivery without nanoparticle uptake: delivery by a kiss-and-run mechanism on the cell membrane. Chemical Communications, 2014, 50, 1369-1371.	2.2	40
308	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	7.2	40
309	High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Letters, 2019, 19, 2178-2185.	4.5	40
310	Synthesis of Fluorescent Polyisoprene Nanoparticles and their Uptake into Various Cells. Macromolecular Bioscience, 2008, 8, 711-727.	2.1	39
311	Printing functional nanostructures: a novel route towards nanostructuring of organic electronic devices via soft embossing, inkjet printing and colloidal self assembly of semiconducting polymer nanospheres. Soft Matter, 2008, 4, 2448.	1.2	39
312	Enzymatic Esterification in Aqueous Miniemulsions. Chemistry - A European Journal, 2009, 15, 2434-2444.	1.7	39
313	A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli. Polymer Chemistry, 2016, 7, 3434-3443.	1.9	39
314	Inorganic Films from Three Different Phosphors via a Liquid Coating Route from Inverse Miniemulsions. Chemistry of Materials, 2004, 16, 5081-5087.	3.2	38
315	Structure Formation in Bis(terpyridine) Derivative Adlayers:  Moleculeâ^'Substrate versus Moleculeâ^'Molecule Interactions. Langmuir, 2007, 23, 11570-11579.	1.6	38
316	Aggregation Phenomena of Long α―and α,ï‰â€Substituted Oligothiophenes – the Effect of Branched vs. Lir Endâ€Groups. European Journal of Organic Chemistry, 2007, 2007, 5686-5702.	lear 1.2	38
317	Hydrogels in Miniemulsions. Advances in Polymer Science, 2010, , 39-63.	0.4	38
318	Surface Click Reactions on Polymeric Nanocapsules for Versatile Functionalization. Macromolecules, 2012, 45, 3419-3427.	2.2	38
319	Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem. Materials Horizons, 2016, 3, 478-486.	6.4	38
320	Morphology and Thermal Properties of Precision Polymers: The Crystallization of Butyl Branched Polyethylene and Polyphosphoesters. Macromolecules, 2016, 49, 1321-1330.	2.2	38
321	Functional Colloidal Stabilization. Advanced Materials Interfaces, 2017, 4, 1600443.	1.9	38
322	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
323	Hierarchically Selfâ€Assembled Host–Guest Network at the Solid–Liquid Interface for Singleâ€Molecule Manipulation. Angewandte Chemie - International Edition, 2008, 47, 3821-3825.	7.2	37
324	Narrowly Size Distributed Zinc-Containing Poly(acrylamide) Latexes via Inverse Miniemulsion Polymerization. Macromolecules, 2010, 43, 3294-3305.	2.2	37

#	Article	IF	CITATIONS
325	Towards copper-free nanocapsules obtained by orthogonal interfacial "click―polymerization in miniemulsion. Chemical Communications, 2012, 48, 5470.	2.2	37
326	A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging. Journal of the American Chemical Society, 2021, 143, 10403-10412.	6.6	37
327	Molecularly Controlled Coagulation of Carboxyl-Functionalized Nanoparticles Prepared by Surfactant-Free Miniemulsion Polymerization. ACS Macro Letters, 2012, 1, 1371-1374.	2.3	36
328	Polymerâ€Based Module for NAD ⁺ Regeneration with Visible Light. ChemBioChem, 2019, 20, 2593-2596.	1.3	36
329	Inkjet printed polymer light-emitting devices fabricated by thermal embedding of semiconducting polymer nanospheres in an inert matrix. Applied Physics Letters, 2008, 92, 183305.	1.5	35
330	Kelvin Probe Force Microscopy in Nonpolar Liquids. Langmuir, 2012, 28, 13892-13899.	1.6	35
331	Live Monitoring of Cargo Release From Peptideâ€Based Hybrid Nanocapsules Induced by Enzyme Cleavage. Macromolecular Rapid Communications, 2012, 33, 248-253.	2.0	35
332	Advanced dextran based nanogels for fightingStaphylococcus aureusinfections by sustained zinc release. Journal of Materials Chemistry B, 2014, 2, 2175-2183.	2.9	35
333	Reversible oxygen addition on a triplet sensitizer molecule: protection from excited state depopulation. Physical Chemistry Chemical Physics, 2015, 17, 6501-6510.	1.3	35
334	pH-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. European Polymer Journal, 2018, 101, 341-349.	2.6	35
335	Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Applied Nano Materials, 2019, 2, 812-818.	2.4	35
336	Nanographenes: Ultrastable, Switchable, and Bright Probes for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2020, 59, 496-502.	7.2	35
337	Benzoxazine Miniemulsions Stabilized with Multifunctional Main-chain Benzoxazine Protective Colloids. Macromolecules, 2011, 44, 5650-5658.	2.2	34
338	Mesoporous CeO ₂ nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology, 2011, 22, 135606.	1.3	34
339	Luminescent Polymeric Dispersions and Films Based on Oligonuclear Lanthanide Clusters. Macromolecular Chemistry and Physics, 2011, 212, 286-296.	1.1	34
340	Determination of the Ideal Surfactant Concentration in Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 812-823.	1.1	34
341	Ceria/Polymer Hybrid Nanoparticles as Efficient Catalysts for the Hydration of Nitriles to Amides. ACS Applied Materials & Description of Natural Science (1975) (1	4.0	34
342	Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water. Langmuir, 2019, 35, 5890-5901.	1.6	34

#	Article	IF	Citations
343	Isolation of extracellular vesicles from microalgae: towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomaterials Science, 2021, 9, 2917-2930.	2.6	34
344	Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Advances in Colloid and Interface Science, 2021, 289, 102366.	7.0	34
345	Freezing of polymer thin films and surfaces: The small molecular weight puzzle. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2968-2979.	2.4	33
346	Zinc release from atomic layer deposited zinc oxide thin films and its antibacterial effect on Escherichia coli. Applied Surface Science, 2013, 287, 375-380.	3.1	33
347	One-pot fabrication of amphiphilic photoswitchable thiophene-based fluorescent polymer dots. Polymer Chemistry, 2013, 4, 773-781.	1.9	33
348	Enzymatic degradation of poly(l-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 131-139.	1.7	33
349	Surface Asymmetry of Coated Spherical Nanoparticles. Nano Letters, 2014, 14, 4138-4144.	4.5	33
350	Controlled Formation of Polymer Nanocapsules with High Diffusion-Barrier Properties and Prediction of Encapsulation Efficiency. Angewandte Chemie - International Edition, 2015, 54, 327-330.	7.2	33
351	Tailoring nanoarchitectonics to control the release profile of payloads. Nanoscale, 2016, 8, 11511-11517.	2.8	33
352	Imaging of Polymeric Nanoparticles: Hard Challenge for Soft Objects. Macromolecular Chemistry and Physics, 2016, 217, 1879-1885.	1.1	33
353	Pre-coating with protein fractions inhibits nano-carrier aggregation in human blood plasma. RSC Advances, 2016, 6, 96495-96509.	1.7	33
354	Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. Journal of Controlled Release, 2018, 289, 23-34.	4.8	33
355	Preparation of polymerizable miniemulsions by ultrasonication. Journal of Coatings Technology Research, 2004, 1, 65-68.	1.2	32
356	Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes. Macromolecular Rapid Communications, 2006, 27, 200-202.	2.0	32
357	Cationic Polybenzoxazines. A Novel Polyelectrolyte Class with Adjustable Solubility and Unique Hydrogen-Bonding Capabilities. Macromolecules, 2011, 44, 7668-7674.	2.2	32
358	Synthesis and characterization of positively charged, alumina oated silica/polystyrene hybrid nanoparticles via pickering miniemulsion polymerization. Journal of Polymer Science Part A, 2011, 49, 4735-4746.	2.5	32
359	Polymer Janus Nanoparticles with Two Spatially Segregated Functionalizations. Macromolecules, 2014, 47, 7194-7199.	2.2	32
360	Selective Interfacial Olefin Cross Metathesis for the Preparation of Hollow Nanocapsules. ACS Macro Letters, 2014, 3, 40-43.	2.3	32

#	Article	IF	Citations
361	Morphology Control in Biphasic Hybrid Systems of Semiconducting Materials. Macromolecular Rapid Communications, 2015, 36, 959-983.	2.0	32
362	Exploring wet chemistry approaches to ZnFe ₂ O ₄ spinel ferrite nanoparticles with different inversion degrees: a comparative study. Inorganic Chemistry Frontiers, 2019, 6, 1527-1534.	3.0	32
363	Preparation of Dually, pH- and Thermo-Responsive Nanocapsules in Inverse Miniemulsion. Langmuir, 2012, 28, 1163-1168.	1.6	31
364	Magnetic Polymer/Nickel Hybrid Nanoparticles Via Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 2213-2222.	1.1	31
365	Nanocapsules for drug delivery through the skin barrier by tissue-tolerable plasma. Laser Physics Letters, 2013, 10, 083001.	0.6	31
366	Structure control in PMMA/silica hybrid nanoparticles by surface functionalization. Colloid and Polymer Science, 2014, 292, 2427-2437.	1.0	31
367	Off/On Fluorescent Nanoparticles for Tunable Highâ€Temperature Threshold Sensing. Advanced Functional Materials, 2018, 28, 1801492.	7.8	31
368	Prevention of Dominant IgG Adsorption on Nanocarriers in IgGâ€Enriched Blood Plasma by Clusterin Precoating. Advanced Science, 2019, 6, 1802199.	5.6	31
369	Artificial Organelles for Energy Regeneration. Advanced Biology, 2019, 3, e1800323.	3.0	31
370	A bio-orthogonal functionalization strategy for site-specific coupling of antibodies on vesicle surfaces after self-assembly. Polymer Chemistry, 2020, 11, 527-540.	1.9	31
371	Formation of Polyimide Nanoparticles in Heterophase with an Ionic Liquid as Continuous Phase. Macromolecules, 2009, 42, 7846-7853.	2.2	30
372	The Longest \hat{l}^2 -Unsubstituted Oligothiophenes and Their Self-Assembly in Solution. Chemistry of Materials, 2010, 22, 6453-6458.	3.2	30
373	Labeling of mesenchymal stromal cells with iron oxide–poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy, 2011, 13, 962-975.	0.3	30
374	HPMA Copolymers as Surfactants in the Preparation of Biocompatible Nanoparticles for Biomedical Application. Biomacromolecules, 2012, 13, 4179-4187.	2.6	30
375	Probing guided modes in a monolayer colloidal crystal on a flat metal film. Physical Review B, 2012, 86,	1.1	30
376	Nanoparticles and the immune system: challenges and opportunities. Nanomedicine, 2016, 11, 2621-2624.	1.7	30
377	Synergy of Miniemulsion and Solvothermal Conditions for the Low-Temperature Crystallization of Magnetic Nanostructured Transition-Metal Ferrites. Chemistry of Materials, 2017, 29, 985-997.	3.2	30
378	Ein asymmetrisches kovalentes Triazinâ€Netzwerk fýr effiziente Photoredoxâ€Katalyse durch Energietransferâ€Kaskaden unter sichtbarem Licht. Angewandte Chemie, 2018, 130, 8449-8453.	1.6	30

#	Article	IF	CITATIONS
379	Biomimetic Cascade Network between Interactive Multicompartments Organized by Enzyme-Loaded Silica Nanoreactors. ACS Applied Materials & Silica Nanoreactors.	4.0	30
380	Amphiphilic Copolymers from Miniemulsified Systems. Macromolecular Chemistry and Physics, 2002, 203, 825-836.	1.1	29
381	Particle morphology development in hybrid miniemulsion polymerization. Journal of Coatings Technology Research, 2004, 1, 53-63.	1.2	29
382	Poly(<i>N</i> -isopropylacrylamide) Grafted on Plasma-Activated Poly(ethylene oxide): Thermal Response and Interaction With Proteins. Langmuir, 2008, 24, 6166-6175.	1.6	29
383	Nanocapsules generated out of a polymeric dexamethasone shell suppress the inflammatory response of liver macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1223-1234.	1.7	29
384	The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. Journal of Controlled Release, 2016, 242, 119-125.	4.8	29
385	Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polymer Chemistry, 2018, 9, 5385-5394.	1.9	29
386	Unraveling the In Vivo Protein Corona. Cells, 2021, 10, 132.	1.8	29
387	Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules, 2020, 21, 4469-4478.	2.6	29
388	New Cationic Surfactants with Sulfonium Headgroups. Langmuir, 2000, 16, 3214-3220.	1.6	28
389	Miniemulsion as efficient system for enzymatic synthesis of acid alkyl esters. Biotechnology and Bioengineering, 2010, 106, 507-515.	1.7	28
390	Nanocarrier for Oral Peptide Delivery Produced by Polyelectrolyte Complexation in Nanoconfinement. Biomacromolecules, 2015, 16, 2282-2287.	2.6	28
391	Synthesis and Thermal Curing of Benzoxazine Functionalized Polyurethanes. Macromolecules, 2015, 48, 3811-3816.	2.2	28
392	Particle morphology of carboxylated poly-(n-butyl acrylate)/poly(methyl methacrylate) composite latex particles investigated by TEM and NMR. Acta Polymerica, 1999, 50, 347-362.	1.3	27
393	Historical Overview of (Mini)emulsion Polymerizations and Preparation of Hybrid Latex Particles. Advances in Polymer Science, 2010, , 1-18.	0.4	27
394	Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine, 2013, 8, 699-713.	1.7	27
395	Encapsulation of magnetic nickel nanoparticles via inverse miniemulsion polymerization. Journal of Applied Polymer Science, 2013, 129, 1426-1433.	1.3	27
396	Unconventional Nonâ€Aqueous Emulsions for the Encapsulation of a Phototriggerable NOâ€Donor Complex in Polymer Nanoparticles. Particle and Particle Systems Characterization, 2013, 30, 138-142.	1,2	27

#	Article	IF	CITATIONS
397	Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors. RSC Advances, 2015, 5, 50063-50069.	1.7	27
398	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
399	Amphiphile-Induced Anisotropic Colloidal Self-Assembly. Langmuir, 2018, 34, 9990-10000.	1.6	27
400	Responsive Colloidosomes with Triple Function for Anticorrosion. ACS Applied Materials & Emp; Interfaces, 2020, 12, 42129-42139.	4.0	27
401	Investigations on the Film-Formation Process of Latex Dispersions by Solid-State NMR Spectroscopy. Macromolecular Chemistry and Physics, 2003, 204, 787-802.	1.1	26
402	Solute Exchange in Synperonic Surfactant Micelles. Langmuir, 2003, 19, 10-17.	1.6	26
403	Nanoâ€Explosions of Nanoparticles for Sudden Release of Substances by Embedded Azoâ€Components as Obtained via the Miniemulsion Process. Macromolecular Materials and Engineering, 2007, 292, 1237-1244.	1.7	26
404	Miniemulsion polymerization of styrene in the presence of macromonomeric initiators. Polymer, 2008, 49, 4930-4934.	1.8	26
405	Organic–Inorganic Hybrid Magnetic Latex. Advances in Polymer Science, 2010, , 237-281.	0.4	26
406	Physical Methods for the Preparation of Hybrid Nanocomposite Polymer Latex Particles. Advances in Polymer Science, 2010, , 19-52.	0.4	26
407	Arrays of size and distance controlled platinum nanoparticles fabricated by a colloidal method. Nanoscale, 2011, 3, 2523.	2.8	26
408	Functionalized Polystyrene Nanoparticles Trigger Human Dendritic Cell Maturation Resulting in Enhanced CD4 ⁺ T Cell Activation. Macromolecular Bioscience, 2012, 12, 1637-1647.	2.1	26
409	Synthesis of Polyester Nanoparticles in Miniemulsion Obtained by Radical Ringâ€Opening of BMDO and Their Potential as Biodegradable Drug Carriers. Macromolecular Bioscience, 2012, 12, 165-175.	2.1	26
410	Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles. Nanotechnology, 2014, 25, 305102.	1.3	26
411	Silica nanocapsules for redox-responsive delivery. Colloid and Polymer Science, 2014, 292, 251-255.	1.0	26
412	Chemical encoding of amphiphilic copolymers for a dual controlled release from their assemblies. Polymer Chemistry, 2015, 6, 5596-5601.	1.9	26
413	Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. Nanoscale, 2020, 12, 2626-2637.	2.8	26
414	Particle Size Determines the Shape of Supraparticles in Self-Lubricating Ternary Droplets. ACS Nano, 2021, 15, 4256-4267.	7.3	26

#	Article	IF	CITATIONS
415	Aerobic Photobiocatalysis Enabled by Combining Core–Shell Nanophotoreactors and Native Enzymes. Journal of the American Chemical Society, 2022, 144, 7320-7326.	6.6	26
416	Biomimetic Route to Calcium Phosphate Coated Polymeric Nanoparticles: Influence of Different Functional Groups and pH. Macromolecular Chemistry and Physics, 2011, 212, 1165-1175.	1.1	25
417	Preparation and Characterization of Anisotropic Submicron Particles From Semicrystalline Polymers. Macromolecular Chemistry and Physics, 2012, 213, 351-358.	1.1	25
418	Anomalous magnetic behavior below 10 K in YCrO3 nanoparticles obtained under droplet confinement. Applied Physics Letters, 2013, 103, .	1.5	25
419	Synthesis of Triplet–Triplet Annihilation Upconversion Nanocapsules Under Protective Conditions. Macromolecular Rapid Communications, 2015, 36, 1084-1088.	2.0	25
420	On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 1296-1311.	1.5	25
421	Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants. Langmuir, 2017, 33, 272-279.	1.6	25
422	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
423	Glass Transition of Disentangled and Entangled Polymer Melts: Single-Chain-Nanoparticles Approach. Macromolecules, 2020, 53, 7312-7321.	2.2	25
424	Targeted Drug Delivery for Sustainable Crop Protection: Transport and Stability of Polymeric Nanocarriers in Plants. Advanced Science, 2021, 8, e2100067.	5.6	25
425	Synthetic Silica Nanoâ€Organelles for Regulation of Cascade Reactions in Multiâ€Compartmentalized Systems. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
426	Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. Nanomaterials, 2022, 12, 682.	1.9	25
427	Fine Tuning of Solid-State Properties of Septithiophenes by Tailoring the Substituents. Chemistry of Materials, 2010, 22, 2079-2092.	3.2	24
428	Narrowly Size-Distributed Cobalt Salt Containing Poly(2-hydroxyethyl methacrylate) Particles by Inverse Miniemulsion. Langmuir, 2010, 26, 7054-7061.	1.6	24
429	A New Design Strategy for the Synthesis of Unsubstituted Polythiophene with Defined High Molecular Weight. Macromolecules, 2012, 45, 5108-5113.	2.2	24
430	Luminescent and Magnetoresponsive Multifunctional Chalcogenide/Polymer Hybrid Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 5999-6005.	1.5	24
431	Sticky water surfaces: Helix–coil transitions suppressed in a cell-penetrating peptide at the air-water interface. Journal of Chemical Physics, 2014, 141, 22D517.	1.2	24
432	Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26137-26144.	4.0	24

#	Article	IF	CITATIONS
433	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie - International Edition, 2021, 60, 18094-18102.	7.2	24
434	Surface-Functionalized Particles: From their Design and Synthesis to Materials Science and Bio-Applications. Current Organic Chemistry, 2013, 17, 900-912.	0.9	24
435	Vesicle-Forming Single-Tail Hydrocarbon Surfactants with Sulfonium Headgroup. Langmuir, 2000, 16, 3003-3005.	1.6	23
436	Polymeric Photoresist Nanoparticles: Lightâ€Induced Degradation of Hydrophobic Polymers in Aqueous Dispersion. Macromolecular Rapid Communications, 2011, 32, 1979-1985.	2.0	23
437	Molecular Exchange Kinetics of Diblock Copolymer Micelles Monitored by Fluorescence Correlation Spectroscopy. ACS Macro Letters, 2014, 3, 428-432.	2.3	23
438	Improved Molecular Imprinting Based on Colloidal Particles Made from Miniemulsion: A Case Study on Testosterone and Its Structural Analogues. Macromolecules, 2016, 49, 2559-2567.	2.2	23
439	Synthesis of alkyl esters by cutinase in miniemulsion and organic solvent media. Biotechnology Journal, 2009, 4, 674-683.	1.8	22
440	Synthesis of Silver/Poly(2-hydroxyethyl methacrylate) Particles via a Combination of Inverse Miniemulsion and Silver Ion Reduction in a "Nanoreactor― Langmuir, 2011, 27, 9849-9859.	1.6	22
441	Online Monitoring of Styrene Polymerization in Miniemulsion by Hyperpolarized ¹²⁹ Xenon NMR Spectroscopy. Macromolecules, 2012, 45, 1839-1846.	2.2	22
442	Imaging the intracellular degradation of biodegradable polymer nanoparticles. Beilstein Journal of Nanotechnology, 2014, 5, 1905-1917.	1.5	22
443	Janus nanoparticles with both faces selectively functionalized for click chemistry. Polymer Chemistry, 2014, 5, 4097.	1.9	22
444	Small Surfactant Concentration Differences Influence Adsorption of Human Serum Albumin on Polystyrene Nanoparticles. Biomacromolecules, 2016, 17, 3845-3851.	2.6	22
445	Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. ACS Nano, 2019, 13, 8749-8759.	7.3	22
446	Versatile Preparation of Silica Nanocapsules for Biomedical Applications. Particle and Particle Systems Characterization, 2020, 37, 1900484.	1.2	22
447	Single Molecule Chemistry with Polymers and Colloids: A Way to Handle Complex Reactions and Physical Processes?. ChemPhysChem, 2001, 2, 207-210.	1.0	21
448	Accurate Elemental Analysis of Metalâ€Containing Polymer Latexes Using ICPâ€Optical Emission Spectrometry. Macromolecular Chemistry and Physics, 2010, 211, 1355-1368.	1.1	21
449	Model Compounds Based on Cyclotriphosphazene and Hexaphenylbenzene with Tethered Li ⁺ -Solvents and Their Ion-Conducting Properties. Chemistry of Materials, 2011, 23, 2120-2129.	3.2	21
450	DNA Amplification via Polymerase Chain Reaction Inside Miniemulsion Droplets with Subsequent Poly(<i>n</i> nêbutylcyanoacrylate) Shell Formation and Delivery of Polymeric Capsules into Mammalian Cells. Macromolecular Bioscience, 2011, 11, 1099-1109.	2.1	21

#	Article	IF	Citations
451	Reversible Redox-Responsive Assembly/Disassembly of Nanoparticles Mediated by Metal Complex Formation. Chemistry of Materials, 2014, 26, 1300-1302.	3.2	21
452	Polymer patchy colloids with sticky patches. Polymer Chemistry, 2014, 5, 365-371.	1.9	21
453	Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties. ACS Applied Materials & Dispersions With Improved Adhesion Properties.	4.0	21
454	Konstruktionsprinzip niedermolekularer organischer Halbleiter f $\tilde{A}\frac{1}{4}$ r metallfreie Photokatalyse mit sichtbarem Licht. Angewandte Chemie, 2016, 128, 9935-9940.	1.6	21
455	Largeâ€Scale Preparation of Polymer Nanocarriers by Highâ€Pressure Microfluidization. Macromolecular Materials and Engineering, 2018, 303, 1700505.	1.7	21
456	Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD). ACS Applied Materials & Samp; Interfaces, 2020, 12, 25625-25632.	4.0	21
457	Formation of Novel Layered Nanostructures from Lanthanide-Complexes by Secondary Interactions with Ligating Monomers in Miniemulsion Droplets. Macromolecular Chemistry and Physics, 2006, 207, 160-165.	1.1	20
458	Sol–gel processes at the droplet interface: hydrous zirconia and hafnia nanocapsules by interfacial inorganic polycondensation. Journal of Materials Chemistry, 2012, 22, 5622.	6.7	20
459	Formation of Highly Ordered Alloy Nanoparticles Based on Precursor-Filled Latex Spheres. Chemistry of Materials, 2012, 24, 1048-1054.	3.2	20
460	Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances, 2015, 5, 55006-55014.	1.7	20
461	Design and Control of Nanoconfinement to Achieve Magnetic Resonance Contrast Agents with High Relaxivity. Advanced Healthcare Materials, 2016, 5, 567-574.	3.9	20
462	Cerium-Doped Copper(II) Oxide Hollow Nanostructures as Efficient and Tunable Sensors for Volatile Organic Compounds. ACS Omega, 2018, 3, 5029-5037.	1.6	20
463	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie - International Edition, 2020, 59, 5712-5720.	7.2	20
464	In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. Journal of the American Chemical Society, 2022, 144, 12219-12228.	6.6	20
465	Synthesis of styrene–butadiene rubber latex via miniemulsion copolymerization. Colloid and Polymer Science, 2009, 287, 259-268.	1.0	19
466	Highly Site Specific, Protease Cleavable, Hydrophobic Peptide–Polymer Nanoparticles. Macromolecules, 2011, 44, 6258-6267.	2.2	19
467	Grafting polyacrylates on natural rubber latex by miniemulsion polymerization. Colloid and Polymer Science, 2011, 289, 229-235.	1.0	19
468	Reâ€dispersible Anisotropic and Structured Nanoparticles: Formation and Their Subsequent Shape Change. Macromolecular Chemistry and Physics, 2012, 213, 829-838.	1.1	19

#	Article	IF	CITATIONS
469	Emulsification of particle loaded droplets with regard to miniemulsion polymerization. Chemical Engineering Journal, 2013, 229, 206-216.	6.6	19
470	Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation. Beilstein Journal of Nanotechnology, 2015, 6, 383-395.	1.5	19
471	Self-Healing for Anticorrosion Based on Encapsulated Healing Agents. Advances in Polymer Science, 2016, , 219-245.	0.4	19
472	Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts. Nanoscale, 2016, 8, 12998-13005.	2.8	19
473	Sequence-Controlled Delivery of Peptides from Hierarchically Structured Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3885-3894.	4.0	19
474	Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalideâ€Coâ€Îµâ€Caprolactone) Nanoparticles by Thiolâ€Ene Reactions. Macromolecular Bioscience, 2019, 19, e1900145.	2.1	19
475	Dispersible porous classical polymer photocatalysts for visible light-mediated production of pharmaceutically relevant compounds in multiple solvents. Journal of Materials Chemistry A, 2020, 8, 1072-1076.	5.2	19
476	Polyphosphoester surfactants as general stealth coatings for polymeric nanocarriers. Acta Biomaterialia, 2020, 116, 318-328.	4.1	19
477	Enzymeâ€Loaded Nanoreactors Enable the Continuous Regeneration of Nicotinamide Adenine Dinucleotide in Artificial Metabolisms. Angewandte Chemie - International Edition, 2021, 60, 7728-7734.	7.2	19
478	On-line detection of emulsion polymerization by solid-state NMR spectroscopy. Colloid and Polymer Science, 1998, 276, 356-361.	1.0	18
479	Solution Processed Conjugated Polymer Multilayer Structures for Light Emitting Devices. Japanese Journal of Applied Physics, 2005, 44, 479-484.	0.8	18
480	Structure Evolution in Layers of Polymer Blend Nanoparticles. Langmuir, 2007, 23, 7235-7240.	1.6	18
481	Polyurethane-block-polystyrene Prepared by Polymerization in Miniemulsion. Macromolecular Chemistry and Physics, 2007, 208, 155-163.	1.1	18
482	Waterâ€based inorganic/polymer hybrid particles prepared via a multiple miniemulsion process. Journal of Polymer Science Part A, 2011, 49, 5019-5029.	2.5	18
483	New possibilities for materials science with STED microscopy. Micron, 2012, 43, 583-588.	1.1	18
484	Pharmacokinetics on a microscale: visualizing Cy5-labeled oligonucleotide release from poly(n-butylcyanoacrylate) nanocapsules in cells. International Journal of Nanomedicine, 2014, 9, 5471.	3.3	18
485	ADMET reactions in miniemulsion. Journal of Polymer Science Part A, 2014, 52, 1300-1305.	2.5	18
486	Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles. Chirality, 2015, 27, 613-618.	1.3	18

#	Article	IF	CITATIONS
487	Nanoparticles and antigen-specific T-cell therapeutics: a comprehensive study on uptake and release. Nanomedicine, 2015, 10, 1063-1076.	1.7	18
488	Silanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structure. RSC Advances, 2016, 6, 53903-53911.	1.7	18
489	Polymeric hepatitis C virus non-structural protein 5A nanocapsules induce intrahepatic antigen-specific immune responses. Biomaterials, 2016, 108, 1-12.	5.7	18
490	Redox-responsive release of active payloads from depolymerized nanoparticles. RSC Advances, 2017, 7, 8272-8279.	1.7	18
491	Validation of weak biological effects by round robin experiments: cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells. Scientific Reports, 2017, 7, 4341.	1.6	18
492	Denaturation via Surfactants Changes Composition of Protein Corona. Biomacromolecules, 2018, 19, 2657-2664.	2.6	18
493	Enhanced photoluminescence properties of a carbon dot system through surface interaction with polymeric nanoparticles. Journal of Colloid and Interface Science, 2018, 518, 11-20.	5.0	18
494	One-Step Preparation of Fuel-Containing Anisotropic Nanocapsules with Stimuli-Regulated Propulsion. ACS Nano, 2020, 14, 498-508.	7.3	18
495	A PMMA-based heterogeneous photocatalyst for visible light-promoted [4 + 2] cycloaddition. Catalysis Science and Technology, 2020, 10, 2092-2099.	2.1	18
496	Modulating Protein Corona and Materials–Cell Interactions with Temperatureâ€Responsive Materials. Advanced Functional Materials, 2022, 32, .	7.8	18
497	The photophysics of organic semiconducting nanospheres: a comprehensive study. Chemical Physics Letters, 2004, 389, 7-13.	1.2	17
498	Probing the local optical properties of layers prepared from polymer nanoparticles. Synthetic Metals, 2005, 152, 101-104.	2.1	17
499	New Approach to the Synthesis of Polyacrylamide in Miniemulsified Systems. Macromolecular Rapid Communications, 2006, 27, 1900-1905.	2.0	17
500	Preservation of dendritic cell function upon labeling with amino functionalized polymeric nanoparticles. Biomaterials, 2010, 31, 7086-7095.	5.7	17
501	Direct and indirect effects of functionalised fluorescence-labelled nanoparticles on human osteoclast formation and activity. Biomaterials, 2011, 32, 1706-1714.	5.7	17
502	Crystallinity Tunes Permeability of Polymer Nanocapsules. Macromolecules, 2017, 50, 4725-4732.	2.2	17
503	The structure of fibers produced by colloid-electrospinning depends on the aggregation state of particles in the electrospinning feed. Polymer, 2017, 127, 101-105.	1.8	17
504	A modular approach for multifunctional polymersomes with controlled adhesive properties. Soft Matter, 2018, 14, 894-900.	1.2	17

#	Article	IF	Citations
505	Conducting PEDOT Nanoparticles: Controlling Colloidal Stability and Electrical Properties. Journal of Physical Chemistry C, 2018, 122, 19197-19203.	1.5	17
506	Protein deglycosylation can drastically affect the cellular uptake. Nanoscale, 2019, 11, 10727-10737.	2.8	17
507	Oneâ€Step Generation of Core–Gap–Shell Microcapsules for Stimuliâ€Responsive Biomolecular Sensing. Advanced Functional Materials, 2020, 30, 2006019.	7.8	17
508	Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromolecules, 2020, 21, 2764-2771.	2.6	17
509	Rotational diffusion measurements of suspended colloidal particles using twoâ€dimensional exchange nuclear magnetic resonance. Journal of Chemical Physics, 1996, 104, 509-520.	1.2	16
510	The vision of "nanochemistryâ€; or is there a promise for specific chemical reactions in nano-restricted environments?. Israel Journal of Chemistry, 2001, 41, 1-6.	1.0	16
511	The Fabrication of Very Small Miniemulsion Latexes fromN-Stearoylglutamate and Lauryl Methacrylate: Evidence for Droplet Budding. Macromolecular Chemistry and Physics, 2003, 204, 1966-1970.	1.1	16
512	Characterization of MRI contrast agentâ€loaded polymeric nanocapsules as versatile vehicle for targeted imaging. Contrast Media and Molecular Imaging, 2010, 5, 59-69.	0.4	16
513	Synthesis of hydrophilic polyurethane particles in non-aqueous inverse miniemulsions. Colloid and Polymer Science, 2011, 289, 1111-1117.	1.0	16
514	Competitive Cellular Uptake of Nanoparticles Made From Polystyrene, Poly(methyl methacrylate), and Polylactide. Macromolecular Bioscience, 2012, 12, 454-464.	2.1	16
515	Enzyme-responsive nanocomposites for wound infection prophylaxis in burn management: in vitro evaluation of their compatibility with healing processes. International Journal of Nanomedicine, 2015, 10, 4111.	3.3	16
516	Design of Cross-Linked Starch Nanocapsules for Enzyme-Triggered Release of Hydrophilic Compounds. Processes, 2017, 5, 25.	1.3	16
517	Immunoglobulins on the surface of differently charged polymer nanoparticles. Biointerphases, 2020, 15, 031009.	0.6	16
518	Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne Environment. Macromolecules, 2021, 54, 3659-3667.	2.2	16
519	Preparation of protected photoinitiator nanodepots by the miniemulsion process. Colloid and Polymer Science, 2007, 285, 687-692.	1.0	15
520	Influence of the Surfactant Concentration on Miniemulsion Polymerization for the Preparation of Hybrid Nanoparticles. Macromolecular Chemistry and Physics, 2012, 213, 2165-2173.	1.1	15
521	A straightforward synthesis of fluorescent and temperatureâ€responsive nanogels. Journal of Polymer Science Part A, 2012, 50, 1043-1048.	2.5	15
522	Chemical Routes Toward Multicompartment Colloids. Macromolecular Chemistry and Physics, 2012, 213, 1183-1189.	1.1	15

#	Article	IF	CITATIONS
523	Water-based hybrid zinc phosphate–polymer miniemulsion as anticorrosive coating. Progress in Organic Coatings, 2013, 76, 555-562.	1.9	15
524	Hydrolysis of poly(hydroxybutyrateâ€ <i>co</i> a€hydroxyvalerate) nanoparticles. Journal of Applied Polymer Science, 2013, 128, 3093-3098.	1.3	15
525	Enhanced in Vivo Targeting of Murine Nonparenchymal Liver Cells with Monophosphoryl Lipid A Functionalized Microcapsules. Biomacromolecules, 2014, 15, 2378-2388.	2.6	15
526	Hybrid Poly(urethane–urea)/Silica Nanocapsules with pH-Sensitive Gateways. Chemistry of Materials, 2015, 27, 4311-4318.	3.2	15
527	Dual-compartment nanofibres: separation of two highly reactive components in close vicinity. RSC Advances, 2015, 5, 97477-97484.	1.7	15
528	Fluorescence labels may significantly affect the protein adsorption on hydrophilic nanomaterials. Colloids and Surfaces B: Biointerfaces, 2016, 147, 124-128.	2.5	15
529	Crystallization at Nanodroplet Interfaces in Emulsion Systems: A Soft-Template Strategy for Preparing Porous and Hollow Nanoparticles. Langmuir, 2016, 32, 13116-13123.	1.6	15
530	Stimulus-Responsive Release from Poly(ferrocenylsilane) Nanocontainers. Macromolecules, 2016, 49, 105-109.	2.2	15
531	Fully degradable protein nanocarriers by orthogonal photoclick tetrazole–ene chemistry for the encapsulation and release. Nanoscale Horizons, 2017, 2, 297-302.	4.1	15
532	Protein Corona Mediated Stealth Properties of Biocompatible Carbohydrateâ€based Nanocarriers. Israel Journal of Chemistry, 2018, 58, 1363-1372.	1.0	15
533	Chitosan Nanocapsules for pHâ€Triggered Dual Release Based on Corrosion Inhibitors as Model Study. Particle and Particle Systems Characterization, 2018, 35, 1800086.	1.2	15
534	Visible Lightâ€Mediated Conversion of Alcohols to Bromides by a Benzothiadiazoleâ€Containing Organic Photocatalyst. Advanced Synthesis and Catalysis, 2019, 361, 3852-3859.	2.1	15
535	Magnetic Polyurethane Microcarriers from Nanoparticle-Stabilized Emulsions for Thermal Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 17956-17966.	3.2	15
536	Photocatalytic Hydrogels with a High Transmission Polymer Network for Pollutant Remediation. Chemistry of Materials, 2021, 33, 9131-9138.	3.2	15
537	Synthetic Cells: From Simple Bioâ€Inspired Modules to Sophisticated Integrated Systems. Angewandte Chemie, 2022, 134, .	1.6	15
538	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
539	On the Stability of Liquid Nanodroplets in Polymerizable Miniemulsions. Journal of Dispersion Science and Technology, 2002, 23, 167-173.	1.3	14
540	Materials for polymer electronics applications– semiconducting polymer thin films and nanoparticles. Macromolecular Symposia, 2004, 212, 83-92.	0.4	14

#	Article	IF	CITATIONS
541	Biomimetic Silver-Containing Colloids of Poly(2-methacryloyloxyethyl phosphorylcholine) and Their Film-Formation Properties. Langmuir, 2012, 28, 4974-4983.	1.6	14
542	Enzyme cleavable nanoparticles from peptide based triblock copolymers. Nanoscale, 2013, 5, 4829.	2.8	14
543	Fabrication of nanogel core–silica shell and hollow silica nanoparticles via an interfacial sol–gel process triggered by transition-metal salt in inverse systems. Journal of Colloid and Interface Science, 2013, 406, 139-147.	5.0	14
544	Encapsulation of In Situ Nanoprecipitated Inorganic Materials in Confined Geometries Into a Polymer Shell Using Inverse Miniemulsion. Macromolecular Chemistry and Physics, 2013, 214, 691-699.	1.1	14
545	Facile Phaseâ€Separation Approach to Encapsulate Functionalized Polymers in Core–Shell Nanoparticles. Macromolecular Chemistry and Physics, 2014, 215, 198-204.	1.1	14
546	Highly symmetric poly(styrene)-block -poly(butadiene-stat -styrene)-block -poly(styrene) copolymer prepared in a non-stop one-pot RAFT polymerization in miniemulsion. Journal of Polymer Science Part A, 2014, 52, 883-889.	2.5	14
547	Triggered Precision Benzoxazine Film Formation by Thermally Induced Destabilization of Benzoxazine Nanodroplets Using a LCST-Bearing Surfactant. Macromolecules, 2014, 47, 3297-3305.	2.2	14
548	meso-Tetraphenylporphyrin with a pi-system extended by fusion with anthraquinone. Organic and Biomolecular Chemistry, 2015, 13, 6977-6983.	1.5	14
549	Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces. Chemical Communications, 2015, 51, 273-275.	2.2	14
550	Evolution of hollow nanostructures in hybrid $Ce < sub > 1\hat{a}^* < i > x < i > < sub > x < sub > x < sub > < i > O < sub > 2 < sub > under droplet confinement leading to synergetic effects on the physical properties. Nanotechnology, 2017, 28, 075601.$	1.3	14
551	Ambient air plasma preâ€treatment of nonâ€woven fabrics for deposition of antibacterial poly (<scp>l</scp> â€lactide) nanoparticles. Plasma Processes and Polymers, 2017, 14, 1600231.	1.6	14
552	Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells. International Journal of Nanomedicine, 2020, Volume 15, 6069-6084.	3.3	14
553	Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. Journal of Colloid and Interface Science, 2021, 601, 678-688.	5.0	14
554	Design of Nanostructured Protective Coatings with a Sensing Function. ACS Applied Materials & Amp; Interfaces, 2021, 13, 53046-53054.	4.0	14
555	Dualâ€√argeted Nanoreactors and Prodrugs: Hydrogen Peroxide Triggers Oxidative Damage and Prodrug Activation for Synergistic Elimination of Cancer Cells. Advanced Functional Materials, 2022, 32, .	7.8	14
556	Antiseptic Nanocapsule Formation via Controlling Polymer Deposition onto Water-in-Oil Miniemulsion Droplets. Macromolecular Symposia, 2007, 251, 54-62.	0.4	13
557	Synthesis of Poly(butylcyanoacrylate) Nanocapsules by Interfacial Polymerization in Miniemulsions for the Delivery of DNA Molecules., 2008,, 120-127.		13
558	Topological Selectivity in a Supramolecular Self-Assembled Hostâ^'Guest Network at the Solidâ^'Liquid Interface. Journal of Physical Chemistry C, 2008, 112, 15236-15240.	1.5	13

#	Article	IF	CITATIONS
559	Synthesis of Narrowly Size-Distributed Metal Salt/Poly(HEMA) Hybrid Particles in Inverse Miniemulsion: Versatility and Mechanism. Langmuir, 2010, 26, 18008-18015.	1.6	13
560	Interfacial Activity of Metal \hat{l}^2 -Diketonato Complexes: In Situ Generation of Amphiphiles by Water Coordination. Langmuir, 2011, 27, 8044-8053.	1.6	13
561	Biodegradable Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Calcium Phosphate. Macromolecular Chemistry and Physics, 2011, 212, 915-925.	1.1	13
562	Effect of Morphological Changes on Presence of Trap States in P3HT:PCBM Solar Cells Studied by Cross-Sectional Energy Filtered TEM and Thermally Stimulated Current Measurements. Journal of Physical Chemistry C, 2013, 117, 23495-23499.	1.5	13
563	pHâ€Sensitive Chitosanâ€based Hydrogel Nanoparticles through Miniemulsion Polymerization Mediated by Peroxide Containing Macromonomer. Macromolecular Bioscience, 2014, 14, 1076-1083.	2.1	13
564	Monophosphoryl lipid A coating of hydroxyethyl starch nanocapsules drastically increases uptake and maturation by dendritic cells while minimizing the adjuvant dosage. Vaccine, 2015, 33, 838-846.	1.7	13
565	Controlled surface mineralization of metal oxides on nanofibers. RSC Advances, 2015, 5, 37340-37345.	1.7	13
566	Multifunctional clickable and protein-repellent magnetic silica nanoparticles. Nanoscale, 2016, 8, 3019-3030.	2.8	13
567	Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click― Reaction. Biomacromolecules, 2016, 17, 148-153.	2.6	13
568	Highly Loaded Semipermeable Nanocapsules for Magnetic Resonance Imaging. Macromolecular Bioscience, 2018, 18, e1700387.	2.1	13
569	Chitosan nanoparticles affect polymorph selection in crystallization of calcium carbonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 48-52.	2.3	13
570	Dualâ€Responsive Photocatalytic Polymer Nanogels. Angewandte Chemie, 2019, 131, 10677-10681.	1.6	13
571	Amphiphilic dendrimers control protein binding and corona formation on liposome nanocarriers. Chemical Communications, 2020, 56, 8663-8666.	2.2	13
572	Formation of giant polymer vesicles by simple double emulsification using block copolymers as the sole surfactant. Soft Matter, 2021, 17, 4942-4948.	1.2	13
573	Surface Properties of Colloidal Particles Affect Colloidal Self-Assembly in Evaporating Self-Lubricating Ternary Droplets. ACS Applied Materials & Self-Assembly in Evaporating Self-Assem	4.0	13
574	Temperature, concentration, and surface modification influence the cellular uptake and the protein corona of polystyrene nanoparticles. Acta Biomaterialia, 2022, 148, 271-278.	4.1	13
575	Determination of the Adsorption Isotherm of the Nonionic Surfactant Triton X-405 on Polystyrene Latex Particles Using 1H NMR. Journal of Colloid and Interface Science, 1998, 202, 554-557.	5.0	12
576	Different types of water in the film formation process of latex dispersions as detected by solid-state nuclear magnetic resonance spectroscopy. Colloid and Polymer Science, 2000, 278, 236-244.	1.0	12

#	Article	IF	CITATIONS
577	Cellular Uptake of Polymer Nanoparticles Imaged by Electron Microscopy Based on High-Pressure Freezing. Microscopy and Microanalysis, 2007, 13, 220-221.	0.2	12
578	Synthesis and Characterization. Lecture Notes in Physics, 2009, , 1-82.	0.3	12
579	Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process. Beilstein Journal of Nanotechnology, 2011, 2, 459-472.	1.5	12
580	Miniemulsions for the Production of Nanostructured Particles. Chemical Engineering and Technology, 2012, 35, 1670-1676.	0.9	12
581	Temperature responsive copolymers of <i>N</i> â€vinylcaprolactam and di(ethylene glycol) methyl ether methacrylate and their interactions with drugs. Journal of Polymer Science Part A, 2013, 51, 3308-3313.	2.5	12
582	Tailor-Made Nanocontainers for Combined Magnetic-Field-Induced Release and MRI. Macromolecular Bioscience, 2014, 14, 1205-1214.	2.1	12
583	Attachment of Poly(<scp>l</scp> -lactide) Nanoparticles to Plasma-Treated Non-Woven Polymer Fabrics Using Inkjet Printing. Macromolecular Bioscience, 2015, 15, 1274-1282.	2.1	12
584	Heparinâ€Based Nanocapsules as Potential Drug Delivery Systems. Macromolecular Bioscience, 2015, 15, 765-776.	2.1	12
585	Fluorescence Correlation Spectroscopy in Dilute Polymer Solutions: Effects of Molar Mass Dispersity and the Type of Fluorescent Labeling. ACS Macro Letters, 2015, 4, 171-176.	2.3	12
586	Aminoâ€Acidâ€Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1421-1426.	2.0	12
587	Waterborne Polymer/Silica Hybrid Nanoparticles and Their Structure in Coatings. Macromolecular Reaction Engineering, 2016, 10, 47-54.	0.9	12
588	Gold nanocolloid–protein interactions and their impact on β-sheet amyloid fibril formation. RSC Advances, 2018, 8, 980-986.	1.7	12
589	Targeted Activation of T Cells with IL-2-Coupled Nanoparticles. Cells, 2020, 9, 2063.	1.8	12
590	Aqueous core and hollow silica nanocapsules for confined enzyme modules. Nanoscale, 2020, 12, 24266-24272.	2.8	12
591	The conjugation strategy affects antibody orientation and targeting properties of nanocarriers. Nanoscale, 2021, 13, 9816-9824.	2.8	12
592	A Novel Route to Multiphase Polymer Systems Containing Nano-Droplets: Radical Polymerization of Vinylic Monomers in Gelled Water-in-Oil Miniemulsions. Macromolecular Materials and Engineering, 2005, 290, 1025-1028.	1.7	11
593	Adsorbateâ [^] Substrate-Mediated Growth of Oligopyridine Monolayers at the Solid/Liquid Interface. Journal of Physical Chemistry C, 2009, 113, 1507-1514.	1.5	11
594	Enzymatic aminolysis of lactones in aqueous miniemulsion: Catalysis through a novel pathway. Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 270-276.	1.8	11

#	Article	IF	CITATIONS
595	Tin(IV) Oxide Coatings from Hybrid Organotin/Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4292-4298.	4.0	11
596	A molecular "screw-clamp― accelerating click reactions in miniemulsions. Chemical Communications, 2014, 50, 10495-10498.	2.2	11
597	Unique Curing Properties through Living Polymerization in Crosslinking Materials: Polyurethane Photopolymers from Vinyl Ether Building Blocks. Angewandte Chemie - International Edition, 2015, 54, 5789-5792.	7.2	11
598	Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1585-1596.	1.7	11
599	Die Steuerung des Stealthâ€Effekts von NanotrÄ g ern durch das VerstÄ ¤ dnis der Proteinkorona. Angewandte Chemie, 2016, 128, 8950-8959.	1.6	11
600	ALTMET Polymerization of Amino Acid-Based Monomers Targeting Controlled Drug Release. Macromolecules, 2016, 49, 6723-6730.	2.2	11
601	Dual-responsive multicompartment nanofibers for controlled release of payloads. RSC Advances, 2016, 6, 43767-43770.	1.7	11
602	Dual Role of Zirconium Oxoclusters in Hybrid Nanoparticles: Cross-Linkers and Catalytic Sites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26275-26284.	4.0	11
603	STED Analysis of Droplet Deformation during Emulsion Electrospinning. Macromolecular Chemistry and Physics, 2017, 218, 1600547.	1.1	11
604	Colloidally Confined Crystallization of Highly Efficient Ammonium Phosphomolybdate Catalysts. ACS Applied Materials & District Representation (2018), 10, 23174-23186.	4.0	11
605	Noncovalent Targeting of Nanocarriers to Immune Cells with Polyphosphoesterâ€Based Surfactants in Human Blood Plasma. Advanced Science, 2019, 6, 1901199.	5.6	11
606	Allâ€Optical Temperature Sensing in Organogel Matrices via Annihilation Upconversion. ChemPhotoChem, 2019, 3, 1020-1026.	1.5	11
607	Selfâ€Assembly of Giant Polymer Vesicles by Lightâ€Assisted Solid Hydration. Macromolecular Rapid Communications, 2019, 40, 1900027.	2.0	11
608	Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomaterialia, 2020, 114, 333-342.	4.1	11
609	Self-sustaining enzyme nanocapsules perform on-site chemical reactions. Nanoscale, 2021, 13, 4051-4059.	2.8	11
610	Biodegradable Harmonophores for Targeted High-Resolution <i>In Vivo</i> Tumor Imaging. ACS Nano, 2021, 15, 4144-4154.	7.3	11
611	On the Ultrastructure and Function of Rhogocytes from the Pond Snail Lymnaea stagnalis. PLoS ONE, 2015, 10, e0141195.	1.1	10
612	Decrease of methyl methacrylate miniemulsion polymerization rate with incorporation of plant oils. European Journal of Lipid Science and Technology, 2016, 118, 93-103.	1.0	10

#	Article	IF	CITATIONS
613	MPLA-coated hepatitis B virus surface antigen (HBsAg) nanocapsules induce vigorous T cell responses in cord blood derived human T cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2383-2394.	1.7	10
614	Redefining the functions of nanocapsule materials. Nanoscale Horizons, 2016, 1, 268-271.	4.1	10
615	Controlling hydrophobicity of silica nanocapsules prepared from organosilanes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 172-177.	2.3	10
616	Nanofibrous photocatalysts from electrospun nanocapsules. Nanotechnology, 2017, 28, 405601.	1.3	10
617	Do the properties of gels constructed by interlinking triply-responsive microgels follow from those of the building blocks?. Soft Matter, 2019, 15, 527-536.	1.2	10
618	Tuning the size and morphology of P3HT/PCBM composite nanoparticles: towards optimized water-processable organic solar cells. Nanoscale, 2020, 12, 22798-22807.	2.8	10
619	Green and stable processing of organic light-emitting diodes from aqueous nanodispersions. Journal of Materials Chemistry C, 2020, 8, 6528-6535.	2.7	10
620	Antibody-Functionalized Carnauba Wax Nanoparticles to Target Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 622-629.	2.3	10
621	Potential-Induced Structure Changes of Oligopyridine Adlayers on Au(111) Electrodes. Langmuir, 2007, 23, 11058-11062.	1.6	9
622	Alkylsulfides of Ag(I) and Au(I) as Metallosurfactants. Langmuir, 2010, 26, 15794-15801.	1.6	9
623	Influence of size and functionality of polymeric nanoparticles on the adsorption behavior of sodium dodecyl sulfate as detected by isothermal titration calorimetry. Colloid and Polymer Science, 2011, 289, 3-14.	1.0	9
624	Performing Encapsulation of dsDNA and a Polymerase Chain Reaction (PCR) inside Nanocontainers Using the Inverse Miniemulsion Process. International Journal of Artificial Organs, 2012, 35, 77-83.	0.7	9
625	Towards regioselective enzymatic hydrolysis and glycerolysis of tricaprylin in miniemulsion and the direct preparation of polyurethane from the hydrolysis products. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 127-137.	1.8	9
626	Biopolymer colloids for controlling and templating inorganic synthesis. Beilstein Journal of Nanotechnology, 2014, 5, 2129-2138.	1.5	9
627	Ironâ€loaded PLLA nanoparticles as highly efficient intracellular markers for visualization of mesenchymal stromal cells by MRI. Contrast Media and Molecular Imaging, 2014, 9, 109-121.	0.4	9
628	Glutathioneâ€Responsive DNAâ€Based Nanocontainers Through an "Interfacial Click―Reaction in Inverse Miniemulsion. Macromolecular Chemistry and Physics, 2014, 215, 2457-2462.	1.1	9
629	Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad. Dalton Transactions, 2015, 44, 19207-19217.	1.6	9
630	Hydrophilie als bestimmender Faktor des Stealthâ€Effekts von Polyphosphoesterâ€funktionalisierten NanotrÃ g ern. Angewandte Chemie, 2018, 130, 5647-5653.	1.6	9

#	Article	IF	Citations
631	Plasmonic and Semiconductor Nanoparticles Interfere with Stereolithographic 3D Printing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50834-50843.	4.0	9
632	Bio-orthogonal triazolinedione (TAD) crosslinked protein nanocapsules affect protein adsorption and cell interaction. Polymer Chemistry, 2020, 11, 3821-3830.	1.9	9
633	Release of the model drug SR101 from polyurethane nanocapsules in porcine hair follicles triggered by LED-derived low dose UVA light. International Journal of Pharmaceutics, 2021, 597, 120339.	2.6	9
634	Superior In Vitro Stimulation of Human CD8+ T-Cells by Whole Virus versus Split Virus Influenza Vaccines. PLoS ONE, 2014, 9, e103392.	1.1	9
635	Optical properties of hydrogels filled with dispersed nanoparticles. Chemistry and Chemical Technology, 2017, 11, 449-453.	0.2	9
636	Achieving dendritic cell subset-specific targeting in vivo by site-directed conjugation of targeting antibodies to nanocarriers. Nano Today, 2022, 43, 101375.	6.2	9
637	Synthesis and characterization of coreâ€shell latexes with microscopic and solidâ€state NMR methods. Macromolecular Symposia, 1995, 92, 109-116.	0.4	8
638	Reactive blends of thermoplastics and latex particles. Polymers for Advanced Technologies, 1995, 6, 309-315.	1.6	8
639	Particle morphology of carboxylated poly(n-butyl acrylate) / poly(methyl methacrylate) composite latex particles. Macromolecular Symposia, 2000, 151, 413-418.	0.4	8
640	Oxidative polymerization of ethylenedioxythiophene with Fenton's reagent by the miniemulsion technique. Colloid and Polymer Science, 2011, 289, 1321-1328.	1.0	8
641	p <scp>H</scp> Stability of Poly(urethane/urea) Capsules Synthesized from Different Hydrophilic Monomers via Interfacial Polyaddition in the Inverse Miniemulsion Process. Macromolecular Symposia, 2013, 331-332, 71-80.	0.4	8
642	Thermoset–thermoplastic hybrid nanoparticles and composite coatings. Polymer, 2014, 55, 2305-2315.	1.8	8
643	Polyfluorene Polyelectrolyte Nanoparticles: Synthesis of Innovative Stabilizers for Heterophase Polymerization. Macromolecular Rapid Communications, 2014, 35, 1925-1930.	2.0	8
644	Alternative Pathway for the Stabilization of Reactive Emulsions via Cross-Linkable Surfactants. ACS Macro Letters, 2014, 3, 1165-1168.	2.3	8
645	Facile synthesis of tunable alkali soluble latexes. Polymer, 2014, 55, 3543-3550.	1.8	8
646	Control of the release of functional payloads from redox-responsive nanocapsules. RSC Advances, 2016, 6, 104330-104337.	1.7	8
647	pH-Responsive nanocapsules from silylated copolymers. Polymer Chemistry, 2016, 7, 4330-4333.	1.9	8
648	Polyglycerol Surfmers and Surfactants for Direct and Inverse Miniemulsion. Macromolecular Bioscience, 2017, 17, 1700070.	2.1	8

#	Article	IF	Citations
649	How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins. Macromolecular Bioscience, 2018, 18, e1800075.	2.1	8
650	Membrane Engineering: Phase Separation in Polymeric Giant Vesicles. Small, 2020, 16, e1905230.	5.2	8
651	Synthetic Silica Nanoâ€Organelles for Regulation of Cascade Reactions in Multiâ€Compartmentalized Systems. Angewandte Chemie, 2022, 134, .	1.6	8
652	Temperatureâ€Responsive Nanoparticles Enable Specific Binding of Apolipoproteins from Human Plasma. Small, 2022, 18, e2103138.	5.2	8
653	Optimum measurement temperature for elucidating incomplete phase separation in core-shell latexes by solid state NMR. Macromolecular Rapid Communications, 1996, 17, 875-883.	2.0	7
654	The evaluation of the size and the structure of the interphase in composite particles containing a macromonomer studied by solid-state NMR. Macromolecular Chemistry and Physics, 2002, 203, 1772-1780.	1.1	7
655	Encapsulation Through (Mini)Emulsion Polymerization. , 2006, , 29-66.		7
656	Anionic polymerization of cyclic ester and amide in miniemulsion: Synthesis and characterization of poly(εâ€caprolactone) and poly(εâ€caprolactoneâ€ <i>co</i> â€Îµâ€caprolactam) nanoparticles. Journal of Polym Science Part A, 2010, 48, 4929-4937.	ഘ .5	7
657	Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in two-dimensional self-assembly. Beilstein Journal of Nanotechnology, 2011, 2, 405-415.	1.5	7
658	Ceria/silicon carbide core–shell materials prepared by miniemulsion technique. Beilstein Journal of Nanotechnology, 2011, 2, 638-644.	1.5	7
659	End-of-life indicators based on temperature switchable nanobombs. Journal of Materials Chemistry, 2012, 22, 9909.	6.7	7
660	Stabilization of Nanoparticles Synthesized by Miniemulsion Polymerization Using "Green―Aminoâ€Acid Based Surfactants. Macromolecular Symposia, 2014, 337, 9-17.	0.4	7
661	HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules. Acta Biomaterialia, 2016, 35, 12-22.	4.1	7
662	Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions. Cells, 2020, 9, 2043.	1.8	7
663	Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. Journal of Physical Chemistry B, 2020, 124, 742-750.	1.2	7
664	Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules, 2021, 22, 2976-2984.	2.6	7
665	Ultra-small gold nanoclusters assembled on plasma polymer-modified zeolites: a multifunctional nanohybrid with anti-haemorrhagic and anti-inflammatory properties. Nanoscale, 2021, 13, 19936-19945.	2.8	7
666	Stability of the magnetic domain structure of nanoparticle thin films against external fields. Journal of Magnetism and Magnetic Materials, 2009, 321, 3719-3725.	1.0	6

#	Article	IF	Citations
667	Benzoxazines for Industrial Applications Comparison with Other Resins, Formulation and Toughening Know-How, and Water-Based Dispersion Technology. , 2011, , 605-620.		6
668	Structure Formation in Metal Complex/Polymer Hybrid Nanomaterials Prepared by Miniemulsion. Langmuir, 2011, 27, 12859-12868.	1.6	6
669	Soft Core–Hard Shell Silicone Hybrid Nanoparticles Synthesized by Miniemulsion Polymerization: Effect of Silicone Content and Crosslinking on Latex Film Properties. Australian Journal of Chemistry, 2011, 64, 1054.	0.5	6
670	Enzymatic Catalysis at Interfacesâ€"Heterophase Systems as Substrates for Enzymatic Action. Catalysts, 2013, 3, 401-417.	1.6	6
671	Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. Advances in Polymer Science, 2013, , 115-210.	0.4	6
672	Polymeric coatings based on acrylic resin latexes from miniemulsion polymerization using hydrocarbon resins as osmotic agents. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
673	Polyurethane Dispersions with Peptide Corona: Facile Synthesis of Stimuli-Responsive Dispersions and Films. Biomacromolecules, 2015, 16, 2418-2426.	2.6	6
674	Stimuli-responsive protection of optically excited triplet ensembles against deactivation by molecular oxygen. Dalton Transactions, 2018, 47, 8605-8610.	1.6	6
675	Comblike Ionic Complexes of Hyaluronic Acid and Alkanoylcholine Surfactants as a Platform for Drug Delivery Systems. Biomacromolecules, 2018, 19, 3669-3681.	2.6	6
676	A Reversible Proton Generator with On/Off Thermoswitch. Macromolecular Rapid Communications, 2019, 40, 1800713.	2.0	6
677	Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2020, 132, 18526-18531.	1.6	6
678	Lowâ€Temperature Miniemulsionâ€Based Routes for Synthesis of Metal Oxides. Chemistry - A European Journal, 2020, 26, 9304-9313.	1.7	6
679	Annihilation upconversion: harvesting the entire deep-red spectral range of the sun irradiation. Journal of Photonics for Energy, 2017, 8, 1.	0.8	6
680	Multimodal Enzyme arrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions. Advanced Science, 2022, 9, e2104884.	5.6	6
681	The influence of sodium ethene sulphonate comonomer on the film formation process of poly(vinyl) Tj ETQq1	1 0.78431 1.0	, 4 rgBT /Overlo
682	From core–shell and Janus structures to tricompartment submicron particles. Polymer, 2014, 55, 715-720.	1.8	5
683	Switching light with light – advanced functional colloidal monolayers. Nanoscale, 2014, 6, 492-502.	2.8	5
684	A Facile Route toward Structured Hybrid Particles Based on Liquid–Solid Assembly. Macromolecules, 2014, 47, 1030-1038.	2.2	5

#	Article	IF	Citations
685	How morphology influences relaxivity – comparative study of superparamagnetic iron oxide–polymer hybrid nanostructures. Contrast Media and Molecular Imaging, 2015, 10, 456-464.	0.4	5
686	A Nanocapsuleâ€Based Approach Toward Physical Thermolatent Catalysis. Advanced Materials, 2016, 28, 6372-6377.	11.1	5
687	Poly(phosphoester) Colloids by Interfacial Polycondensation in Miniemulsion. Macromolecular Chemistry and Physics, 2016, 217, 1941-1947.	1.1	5
688	Suppressing non-controlled leakage of hydrophilic payloads from redox-responsive nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 2-7.	2.3	5
689	Inorganic Protection of Polymer Nanocapsules: A Strategy to Improve the Efficiency of Encapsulated Optically Active Molecules. Israel Journal of Chemistry, 2018, 58, 1356-1362.	1.0	5
690	Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerolâ€Modified Nanocarriers. Macromolecular Bioscience, 2019, 19, 1800468.	2.1	5
691	Nanovaccine impact on dendritic cells: transcriptome analysis enables new insights into antigen and adjuvant effects. Nanomedicine, 2020, 15, 2053-2069.	1.7	5
692	Vitamin C Loaded Polyethylene: Synthesis and Properties of Precise Polyethylene with Vitamin C Defects via Acyclic Diene Metathesis Polycondensation. Macromolecules, 2020, 53, 2932-2941.	2.2	5
693	Encapsulation of polyprodrugs enables an efficient and controlled release of dexamethasone. Nanoscale Horizons, 2021, 6, 791-800.	4.1	5
694	Visible Lightâ€Promoted Aryl Azoline Formation over Mesoporous Organosilica as Heterogeneous Photocatalyst. ChemCatChem, 2021, 13, 3410-3413.	1.8	5
695	Tailoring the mechanoresponsive release from silica nanocapsules. Nanoscale, 2021, 13, 15415-15421.	2.8	5
696	Polyreactions in Miniemulsions. Macromolecular Rapid Communications, 2001, 22, 896.	2.0	5
697	Glycerolâ€Based Polyurethane Nanoparticles Reduce Friction and Wear of Lubricant Formulations. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
698	Nanoconfinement in miniemulsion increases reaction rates of thiol–ene photopolymerization and yields high molecular weight polymers. Polymer Chemistry, 2022, 13, 2831-2841.	1.9	5
699	Multicomponent encapsulation into fully degradable protein nanocarriers ⟨i>via⟨ i> interfacial azide–alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics. Nanoscale Horizons, 2022, 7, 908-915.	4.1	5
700	A detailed study of the photophysics of organic semiconducting nanospheres. Synthetic Metals, 2003, 139, 609-612.	2.1	4
701	High Fidelity Selfâ€Recognition of Isomeric Oligopyridines in Binary 2D Selfâ€Assembly and Its Application for Separation. Chemistry - A European Journal, 2011, 17, 7831-7836.	1.7	4
702	Sun-light upconversion in multi-component organic systems: development towards application for solar cells outcome enhancement. , 2012, , .		4

#	Article	IF	CITATIONS
703	Thermal and acid labile polyurethanes as a new class of responsive materials in polymeric nanoparticles and nanocapsules. Journal of Polymer Science Part A, 2012, 50, 80-88.	2.5	4
704	Wetting on the Microscale: Shape of a Liquid Drop on a Microstructured Surface at Different Length Scales. Langmuir, 2012, 28, 10136-10139.	1.6	4
705	Decontamination of skin exposed to nanocarriers using an absorbent textile material and PEG-12 dimethicone. Laser Physics Letters, 2014, 11, 115603.	0.6	4
706	Waterâ∈Based Adhesives with Tailored Hydrophobic Association: Dilution Resistance and Improved Setting Behavior. Macromolecular Rapid Communications, 2014, 35, 1872-1878.	2.0	4
707	Polylactideâ€Based Nanoparticles with Tailorâ€Made Functionalization. Macromolecular Chemistry and Physics, 2015, 216, 1774-1781.	1.1	4
708	Assembly of New Merocyanine Chromophores with a 1,8-Naphthalimide Core by a New Method for the Synthesis of the Methine Function. Australian Journal of Chemistry, 2015, 68, 1399.	0.5	4
709	Upconverting the IR-A Range of the Sun Spectrum using Palladium Tetraaryltetraanthra[2,3]porphyrins. Photochemical and Photobiological Sciences, 0, , .	1.6	4
710	Competing and simultaneous click reactions at the interface and in solution. RSC Advances, 2016, 6, 51327-51331.	1.7	4
711	Timing of Heparin Addition to the Biomolecular Corona Influences the Cellular Uptake of Nanocarriers. Biomacromolecules, 2019, 20, 3724-3732.	2.6	4
712	Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores. Beilstein Journal of Nanotechnology, 2019, 10, 522-530.	1.5	4
713	Polymeric Nanocarriers. Nanoscience and Technology, 2019, , 53-84.	1.5	4
714	Möglichkeiten und Limitierungen verschiedener Trenntechniken zur Analyse der Proteinkorona. Angewandte Chemie, 2019, 131, 12918-12925.	1.6	4
715	Synergistic Anticancer Therapy by Ovalbumin Encapsulationâ€Enabled Tandem Reactive Oxygen Species Generation. Angewandte Chemie, 2020, 132, 20183-20191.	1.6	4
716	Controlling the semi-permeability of protein nanocapsules influences the cellular response to macromolecular payloads. Journal of Materials Chemistry B, 2021, 9, 8389-8398.	2.9	4
717	Accumulation of the photonic energy of the deep-red part of the terrestrial sun irradiation by rare-earth metal-free <i>E</i> – <i>Z</i> photoisomerization. Journal of Materials Chemistry C, 2021, 9, 7119-7126.	2.7	4
718	Bursting and Reassembly of Giant Double Emulsion Drops Form Polymer Vesicles. ACS Macro Letters, 2021, 10, 401-405.	2.3	4
719	Introducing… Advisory Editors and New Author Profiles at <i>Angewandte Chemie </i> Chemie - International Edition, 2021, 60, 16720-16722.	7.2	4
720	The controlled generation of nanosized structures in miniemulsions. , 2001, , 110-112.		4

#	Article	IF	CITATIONS
721	Nanocarriers Made of Proteins: Intracellular Visualization of a Smart Biodegradable Drug Delivery System. Small, 2022, 18, e2106094.	5.2	4
722	Tetrathienothiophene Porphyrin as a Metal-Free Sensitizer for Room-Temperature Triplet–Triplet Annihilation Upconversion. Frontiers in Chemistry, 2022, 10, 809863.	1.8	4
723	Characterization of Particle Morphology by Solid-State NMR. , 1997, , 203-216.		3
724	Miniemulsions for the Convenient Synthesis of Organic and Inorganic Nanoparticles and"Single Molecule―Applications in Materials Chemistry. , 0, , 175-215.		3
725	Mesoporous Silica and Titania by Glycol-Modified Precursors. Materials Research Society Symposia Proceedings, 2007, 1007, 1.	0.1	3
726	Absolute Quantitation of Subâ€∢scp>Micrometer Particles in Cells by Flow Cytometry. Macromolecular Bioscience, 2013, 13, 1568-1575.	2.1	3
727	Synthesis of Different Mesoporous SiO ₂ Structures by Using PNIPAMâ€∢i>coàêPS Particles as Templates. Macromolecular Symposia, 2014, 337, 18-24.	0.4	3
728	Size-Dependent Self-Assembly of Anisotropic Silica-Coated Hybrid Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 2070-2079.	1.1	3
729	Stabilization of Inverse Miniemulsions by Silyl-Protected Homopolymers. Polymers, 2016, 8, 303.	2.0	3
730	Conjugated Polymer Nanoparticleâ€Triplet Emitter Hybrids in Aqueous Dispersion: Fabrication and Fluorescence Quenching Behavior. Macromolecular Rapid Communications, 2016, 37, 271-277.	2.0	3
731	Novel strategies in vaccine design: can nanocapsules help prevent and treat hepatitis B?. Nanomedicine, 2017, 12, 1205-1207.	1.7	3
732	Large area conductive nanoaperture arrays with strong optical resonances and spectrally flat terahertz transmission. Applied Physics Letters, 2017, 111, .	1.5	3
733	Engineering von Proteinen an OberflÄ e hen: Von komplementÄ r er Charakterisierung zu MaterialoberflÄ e hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	1.6	3
734	From In Silico to Experimental Validation: Tailoring Peptide Substrates for a Serine Protease. Biomacromolecules, 2020, 21, 1636-1643.	2.6	3
735	Heparin modulates the cellular uptake of nanomedicines. Biomaterials Science, 2021, 9, 1227-1231.	2.6	3
736	Single Molecule Chemistry with Polymers and Colloids: A Way to Handle Complex Reactions and Physical Processes?., 2001, 2, 207.		3
737	Quantitative considerations for the formulation of miniemulsions. , 2001, , 101-103.		3
738	Thermally activated delayed fluorescence in an optically accessed soft matter environment. Journal of Materials Chemistry C, 2022, 10, 4533-4545.	2.7	3

#	Article	IF	CITATIONS
739	Structure-Based Design of High-Affinity and Selective Peptidomimetic Hepsin Inhibitors. Biomacromolecules, 2022, 23, 2236-2242.	2.6	3
740	Different synthetic pathways of nanoparticle-cored dendrimers (NCDs): Effects on the properties and their application as redox active centers. Journal of Polymer Science Part A, 2014, 52, 3185-3197.	2.5	2
741	Continuous Preparation of Polymer/Inorganic Composite Nanoparticles via Miniemulsion Polymerization., 2015,, 345-370.		2
742	The Cushion Method: A New Technique for the Recovery of Hydrophilic Nanocarriers. Langmuir, 2016, 32, 13669-13674.	1.6	2
743	Poly(3â€hydroxybutirateâ€ <i>co</i> â€3â€hydroxyvalerate)–Polystyrene Hybrid Nanoparticles via Miniemulsion Polymerization. Macromolecular Reaction Engineering, 2016, 10, 39-46.	0.9	2
744	Processing and adjusting the hydrophilicity of poly(oxymethylene) (co)polymers: nanoparticle preparation and film formation. Polymer Chemistry, 2016, 7, 184-190.	1.9	2
745	Kontrollierte Polymermikrostruktur in anionischer Polymerisation durch Kompartimentierung. Angewandte Chemie, 2018, 130, 2509-2513.	1.6	2
746	Bottomâ€Up Synthetic Biology: Towards the Modular Design of Artifical Cells from Functional Modules. Advanced Biology, 2019, 3, 1900095.	3.0	2
747	Magnetically enhanced polymer-supported ceria nanocatalysts for the hydration of nitriles. Nanotechnology, 2020, 31, 405604.	1.3	2
748	Nanoparticle Shape: The Influence of Nanoparticle Shape on Protein Corona Formation (Small) Tj ETQq0 0 0 rgBT /	Overlock : 5.2	10 Tf 50 38
749	Amphiphilic Polyphenylene Dendron Conjugates for Surface Remodeling of Adenovirusâ€5. Angewandte Chemie, 2020, 132, 5761-5769.	1.6	2
750	Enzymeâ€Loaded Nanoreactors Enable the Continuous Regeneration of Nicotinamide Adenine Dinucleotide in Artificial Metabolisms. Angewandte Chemie, 2021, 133, 7807-7813.	1.6	2
751	Introducing… Advisory Editors and New Author Profiles at <i>Angewandte Chemie</i> . Angewandte Chemie, 2021, 133, 16856-16858.	1.6	2
752	Extending the infrared limit of oxygenic photosynthesis. SPIE Newsroom, 0, , .	0.1	2
7 53	New approach using fluorescent nanosensors for filiform corrosion inhibition. Materials Letters, 2022, 318, 132240.	1.3	2
754	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	1.6	2
755	Squaric Esterâ€Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
756	Charakterisierung von Zwischenschichtstrukturen in Kern/Mantel-Latices mit Festkörper-NMR. Chemie-Ingenieur-Technik, 1997, 69, 111-115.	0.4	1

#	Article	IF	CITATIONS
757	Nanostructured solar cells based on semiconducting polymer nanospheres (SPNs) of M3EH-PPV and CN-Ether-PPV., 2004,,.		1
758	Unsolved Medical Problems: Blood-brain barrier in neurodegenerative diseases: perspectives for Nanomedicine. European Journal of Nanomedicine, 2009, 2, .	0.6	1
759	Biosynthesis of fatty acids alkyl esters in miniemulsion as a reaction media. New Biotechnology, 2009, 25, \$116.	2.4	1
760	Interplay of Mie and Bragg resonances in partly ordered monolayers of colloidal spheres. , 2012, , .		1
761	Thermal properties of nanocapsules measured by scanning force microscopy methods. Microelectronic Engineering, 2012, 97, 223-226.	1.1	1
762	Visualizing the Protein Corona: A Qualitative and Quantitative Approach towards the Nano-bio-interface. Microscopy and Microanalysis, 2017, 23, 1188-1189.	0.2	1
763	Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization. Nanotechnology, 2017, 28, 365603.	1.3	1
764	Quantification of fluorescent dyes in organ tissue samples via HPLC analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1072, 34-39.	1.2	1
765	The Role of the Protein Corona in the Uptake Process of Nanoparticles. Microscopy and Microanalysis, 2018, 24, 1404-1405.	0.2	1
766	How to Minimize Light–Organic Matter Interactions for All-Optical Sub-Cutaneous Temperature Sensing. ACS Omega, 2021, 6, 18860-18867.	1.6	1
767	Polymer defect engineering – conductive 2D organic platelets from precise thiophene-doped polyethylene. Polymer Chemistry, 2021, 12, 2045-2053.	1.9	1
768	Encapsulation of Carbon Black by Miniemulsion Polymerization. Macromolecular Chemistry and Physics, 2001, 202, 51-60.	1.1	1
769	On the Stability of Liquid Nanodroplets in Polymerizable Miniemulsions. Journal of Dispersion Science and Technology, 2002, 23, 167-173.	1.3	1
770	Preparation of Polymer and Hybrid Colloids by Miniemulsion for Biomedical Applications. Surfactant Science, 2003, , .	0.0	1
771	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie, 0, , .	1.6	1
772	Organic Light Emitting Devices Fabricated from Semiconducting Nanospheres. Materials Research Society Symposia Proceedings, 2002, 738, 8101.	0.1	0
773	Nanoreaktoren, Nanokapseln und Nanobomben. Nachrichten Aus Der Chemie, 2008, 56, 649-652.	0.0	0
774	Geometrical control of the resonances and mode composition in hybrid plasmonic photonic crystals. , 2013, , .		0

#	Article	lF	CITATIONS
77 5	Balancing ballistic and hopping light transport by purposive arraying of colloidal particles. , 2014, , .		О
776	Frontispiece: Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
777	Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells, 2020, 9, 2087.	1.8	O
778	Frontispiz: Covalent Triazine Framework Nanoparticles via Sizeâ€Controllable Confinement Synthesis for Enhanced Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2020, 132, .	1.6	0
779	Ultrasmall Nanocapsules Obtained by Controlling Ostwald Ripening. Angewandte Chemie, 2021, 133, 18242-18250.	1.6	О
780	Heterophase Polymerization in Inverse Systems. Surfactant Science, 2001, , .	0.0	0
781	Targeted Polymeric Nanoparticles. , 2010, , 417-428.		О
782	Differential uptake of functionalized polystyrene nanoparticles by human macrophages and monocytic cells. FASEB Journal, 2012, 26, 580.9.	0.2	0
783	Nano-holes vs Nano-cracks in Thin Gold Films: What Causes Anomalous THz Transmission?. , 2015, , .		О
784	REAÇÕES DE POLIMERIZAÇÃO VIA METÃTESE DE DIENO ACÃCLICO (ADMET) EM MINIEMULSÃO., 0,,.		0
785	Cellular Uptake of Polymer Nanoparticles Imaged by Electron Microscopy. , 2008, , 19-20.		O