
Jay M Edelberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study design and rationale of VALOR-HCM: evaluation of mavacamten in adults with symptomatic obstructive hypertrophic cardiomyopathy who are eligible for septal reduction therapy. American Heart Journal, 2021, 239, 80-89.	1.2	35
2	Clinical and economic burden of obstructive hypertrophic cardiomyopathy in the United States. Journal of Medical Economics, 2021, 24, 1115-1123.	1.0	11
3	Timeâ€Dependent Cardiovascular Treatment Benefit Model for Lipid‣owering Therapies. Journal of the American Heart Association, 2020, 9, e016506.	1.6	8
4	Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 396, 759-769.	6.3	481
5	Effects of danicamtiv, a novel cardiac myosin activator, in heart failure with reduced ejection fraction: experimental data and clinical results from a phase 2a trial. European Journal of Heart Failure, 2020, 22, 1649-1658.	2.9	49
6	Evaluation of Mavacamten in Symptomatic Patients With Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2020, 75, 2649-2660.	1.2	176
7	Alirocumab in Patients With Polyvascular Disease and Recent Acute CoronaryÂSyndrome. Journal of the American College of Cardiology, 2019, 74, 1167-1176.	1.2	154
8	Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events in the ODYSSEY OUTCOMES Trialâ€. Journal of Clinical Lipidology, 2019, 13, e54-e55.	0.6	0
9	Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes and Endocrinology,the, 2019, 7, 618-628.	5.5	207
10	Effects of Alirocumab on Cardiovascular Events After Coronary Bypass Surgery. Journal of the American College of Cardiology, 2019, 74, 1177-1186.	1.2	49
11	Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial. European Heart Journal, 2019, 40, 2801-2809.	1.0	45
12	Effect of Alirocumab on Mortality After Acute Coronary Syndromes. Circulation, 2019, 140, 103-112.	1.6	107
13	POST-ACUTE CORONARY SYNDROME PATIENTS WITH POLYVASCULAR DISEASE DERIVE LARGE ABSOLUTE BENEFIT FROM ALIROCUMAB: ODYSSEY OUTCOMES. Journal of the American College of Cardiology, 2019, 73, 2034.	1.2	0
14	Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events. Journal of the American College of Cardiology, 2019, 73, 387-396.	1.2	131
15	Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. New England Journal of Medicine, 2018, 379, 2097-2107.	13.9	2,211
16	Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1 to 2Âyears. Journal of Clinical Lipidology, 2017, 11, 986-997.	0.6	24
17	Navigating the Future of Cardiovascular Drug Development—Leveraging Novel Approaches to Drive Innovation and Drug Discovery: Summary of Findings from the Novel Cardiovascular Therapeutics Conference. Cardiovascular Drugs and Therapy, 2017, 31, 445-458.	1.3	8
18	Effect of Alirocumab on Lipoprotein(a) Over ≥1.5ÂYears (from the Phase 3 ODYSSEY Program). American Journal of Cardiology, 2017, 119, 40-46.	0.7	116

JAY M EDELBERG

#	Article	IF	CITATIONS
19	Lowering LDL-C with alirocumab, an investigational PCSK9 inhibitor. Clinical Lipidology, 2014, 9, 603-606.	0.4	0
20	Endothelial microparticles: Sophisticated vesicles modulating vascular function. Vascular Medicine, 2013, 18, 204-214.	0.8	79
21	Relationship of microparticles to progenitor cells as a measure of vascular health in a diabetic population. Cytometry Part B - Clinical Cytometry, 2010, 78B, 329-337.	0.7	26
22	Stem Cell Review Series: Regulating highly potent stem cells in aging: environmental influences on plasticity. Aging Cell, 2008, 7, 599-604.	3.0	15
23	Stem cells for cardiovascular repair — The challenges of the aging heart. Journal of Molecular and Cellular Cardiology, 2008, 45, 582-592.	0.9	15
24	Stem Cells and the Regeneration of the Aging Cardiovascular System. Circulation Research, 2007, 100, 1116-1127.	2.0	112
25	Bone Marrow Oct3/4+Cells Differentiate Into Cardiac Myocytes via Age-Dependent Paracrine Mechanisms. Circulation Research, 2007, 100, e1-11.	2.0	61
26	Endothelial Precursor Cells. Stem Cell Reviews and Reports, 2007, 3, 218-225.	5.6	12
27	Quantitative PCR-based approach for rapid phage display analysis: a foundation for high throughput vascular proteomic profiling. Physiological Genomics, 2006, 26, 202-208.	1.0	9
28	BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiological Genomics, 2006, 24, 191-197.	1.0	58
29	PDGF-AB-based functional cardioprotection of the aging rat heart. Experimental Gerontology, 2006, 41, 63-68.	1.2	5
30	Vascular tenascin regulates cardiac endothelial phenotype and neovascularization. FASEB Journal, 2006, 20, 717-719.	0.2	74
31	A quantitative approach to phage display analysis for molecular profiling of vascular heterogeneity. FASEB Journal, 2006, 20, A32.	0.2	0
32	Age-related differences in repair of dermal wounds and myocardial infarcts attenuate during the later stages of healing. In Vivo, 2006, 20, 801-6.	0.6	14
33	A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Coronary Artery Disease, 2005, 16, 407-410.	0.3	29
34	Cytokine Preconditioning Promotes Codifferentiation of Human Fetal Liver CD133+Stem Cells Into Angiomyogenic Tissue. Circulation, 2005, 111, 1175-1183.	1.6	58
35	Harnessing Hormonal Signaling for Cardioprotection. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, re6-re6.	0.9	12
36	Phage display identification of age-associated TNFα-mediated cardiac oxidative induction. Physiological Genomics, 2004, 18, 255-260.	1.0	6

JAY M EDELBERG

#	Article	IF	CITATIONS
37	Senescent Impairment in Synergistic Cytokine Pathways That Provide Rapid Cardioprotection in the Rat Heart. Journal of Experimental Medicine, 2004, 199, 797-804.	4.2	48
38	Comparative PRKAR1A genotype-phenotype analyses in humans with Carney complex and prkar1a haploinsufficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14222-14227.	3.3	152
39	Vascular pathology and repair in the aging heart: alterations in inflammatory mediators. Drug Discovery Today Disease Mechanisms, 2004, 1, 59-64.	0.8	1
40	Platelet-derived growth factor improves cardiac function in a rodent myocardial infarction model. Coronary Artery Disease, 2004, 15, 59-64.	0.3	16
41	Impaired Angiogenesis in the Aged. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, 7pe-7.	0.9	72
42	Translation of PDGF Cardioprotective Pathways. Cardiovascular Toxicology, 2003, 3, 27-36.	1.1	13
43	Genetically Engineered Biologically Based Hemostatic Bioassay. Annals of Biomedical Engineering, 2003, 31, 159-162.	1.3	4
44	Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood, 2003, 102, 2115-2121.	0.6	49
45	Vulnerable Atherosclerotic Plaque: Clinical Implications. Current Vascular Pharmacology, 2003, 1, 183-204.	0.8	41
46	Loss of SR-BI Expression Leads to the Early Onset of Occlusive Atherosclerotic Coronary Artery Disease, Spontaneous Myocardial Infarctions, Severe Cardiac Dysfunction, and Premature Death in Apolipoprotein E–Deficient Mice. Circulation Research, 2002, 90, 270-276.	2.0	461
47	Young Adult Bone Marrow–Derived Endothelial Precursor Cells Restore Aging-Impaired Cardiac Angiogenic Function. Circulation Research, 2002, 90, E89-93.	2.0	290
48	Platelet-Derived Growth Factor-AB Limits the Extent of Myocardial Infarction in a Rat Model. Circulation, 2002, 105, 608-613.	1.6	138
49	Enhanced myocyte-based biosensing of the blood-borne signals regulating chronotropy. Journal of Applied Physiology, 2002, 92, 581-585.	1.2	9
50	Auto Repair on the Aging Stem Cell Superhighway. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 13pe-13.	0.9	2
51	Regulation of Vascular Bed–Specific Prothrombotic Potential. Circulation Research, 2001, 89, 117-124.	2.0	36
52	Agingâ€Associated Changes in Vascular Activity: A Potential Link to Geriatric Cardiovascular Disease. The American Journal of Geriatric Cardiology, 2001, 10, 348-354.	0.7	51
53	Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Medicine, 1999, 5, 1010-1017.	15.2	519
54	A murine model of myocardial microvascular thrombosis. Journal of Clinical Investigation, 1999, 104, 533-539.	3.9	62

JAY M EDELBERG

#	Article	IF	CITATIONS
55	Vascular Bed–specific Expression of an Endothelial Cell Gene Is Programmed by the Tissue Microenvironment. Journal of Cell Biology, 1997, 138, 1117-1124.	2.3	261
56	Purification of Heparan Sulfate D-Glucosaminyl 3-O-Sulfotransferase. Journal of Biological Chemistry, 1996, 271, 27072-27082.	1.6	112
57	Vascular Regulation of Plasminogen Activator Inhibitor-1 Activity. Seminars in Thrombosis and Hemostasis, 1994, 20, 319-323.	1.5	6
58	[17] Lipoprotein (a): Purification and kinetic analysis. Methods in Enzymology, 1993, 223, 272-288.	0.4	2
59	lonic modulation of the effects of heparin on plasminogen activation by tissue plasminogen activator: The effects of ionic strength, divalent cations, and chloride. Archives of Biochemistry and Biophysics, 1992, 296, 530-538.	1.4	9
60	Lipoprotein(a) inhibition of plasminogen activation by tissue-type plasminogen activator. Thrombosis Research, 1990, 57, 155-162.	0.8	113