Olga B Shcherbina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198755/publications.pdf Version: 2024-02-01

OLCA R SHCHERRINA

#	Article	IF	CITATIONS
1	Structure and properties of luminescent ceramics GdNbO4 obtained by usual technology and by hot pressing. Optik, 2021, 245, 167683.	1.4	4
2	SYNTHESIS, STRUCTURE, LUMINESCENT AND MECHANICAL PROPERTIES OF YNbÑTa1–ÑO4 SOLID SOLUTI Journal of Structural Chemistry, 2021, 62, 1715-1722.	ONS.	2
3	Structure and mechanical properties of hyper-hardened solid solutions Li0.12Na0.88TayNb1–yO3. Ferroelectrics, 2020, 568, 23-38.	0.3	0
4	Luminescence Properties of Sol–Gel Derived Ceramic GdNbÑTa1 –ÑO4 and YNbÑTa1 –ÑO4 Solid S Inorganic Materials, 2020, 56, 437-442.	olutions. 0.2	3
5	COMPARATIVE STUDY OF ELECTROPHYSICAL CHARACTERISTICS OF CERAMIC AND MONOCRYSTALLINE LITHIUM TANTALATE. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2019, , 129-137.	0.2	0
6	MICROSTRUCTURE, PHASE STATES, DIELECTRIC AND ELASTIC PROPERTIES OF CERAMIC SOLID SOLUTIONS Li0,17Na0,83NbyTa1-yO3 OBTAINED AT HIGH PRESSURE. Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, 2018, , 252-261.	0.2	0
7	Influence of ultrafast quenching on the structure of Li0.12Na0.88Ta y Nb1 – y O3 ceramics obtained by solid-phase synthesis. Technical Physics, 2017, 62, 424-430.	0.2	2
8	Effect of ultrarapid quenching on the structure and mechanical properties of Nb2O5 and Ta2O5. Inorganic Materials, 2016, 52, 1244-1249.	0.2	1
9	Growth of LiNbO3:Er Crystals and concentration dependences of their properties. Crystallography Reports, 2016, 61, 1031-1038.	0.1	6
10	Synthesis, structure, and electrical and mechanical properties of Nb2(1 â^' y)Ta2y O5 ceramics. Inorganic Materials, 2015, 51, 503-511.	0.2	1
11	Structure and mechanical characteristics of ceramic Nb2O5 and Nb2(1 â^' y)Ta2y O5. Inorganic Materials, 2013, 49, 909-915.	0.2	2
12	Electrical properties of LiNbO3〈RE〉 crystals grown under steady-state and transient conditions. Inorganic Materials, 2013, 49, 101-108.	0.2	1
13	Effect of ceramic powder particle size on the electrical properties of Li0.03Na0.97Ta0.05Nb0.95O3 ceramics. Inorganic Materials, 2013, 49, 185-193.	0.2	2
14	The Effect of Grain Size of the Stock on Electrical Characteristics of the Li0.03Na0.97Ta0.05Nb0.95O3Perovskite Ceramics. Ferroelectrics, 2012, 436, 72-79.	0.3	1
15	Formation of Layers of Diverse Stoichiometric and Phase Composition in Lithium Tantalate Crystals at Treatment by Vapour Transport Equilibration. Ferroelectrics, 2012, 430, 71-77.	0.3	0
16	Mechanical properties of Nb2O5 and Ta2O5 prepared by different procedures. Inorganic Materials, 2012, 48, 433-438.	0.2	22
17	Regular domain structures fabricated by an electron beam in stoichiometric LiNbO3 crystals. Physics of the Solid State, 2012, 54, 962-964.	0.2	4
18	The structure of niobium and tantalum oxides processed by concentrated light flux. Ukrainian Journal of Physical Optics, 2012, 13, 207.	9.7	28

Olga B Shcherbina

#	Article	IF	CITATIONS
19	Physical Properties and Structure of Niobium Pentoxide Ceramics Treated by Concentrated Light Flow. Integrated Ferroelectrics, 2011, 123, 137-143.	0.3	3
20	Effect of high-intensity light on the properties and structure of ceramic Nb2O5. Inorganic Materials, 2011, 47, 549-553.	0.2	0
21	Microstructure and Young's modulus of high-pressure Li x Na1 â^' x TayNb1 â^' y O3 ceramics. Inorganic Materials, 2011, 47, 686-689.	0.2	1
22	Formation of a stoichiometric layer and new polar phase upon exposure of LiTaO3 single crystals to lithium vapor. Inorganic Materials, 2011, 47, 1233-1237.	0.2	1
23	Microstructures and nanostructures, elastic properties, and heat resistance of ceramics with a protective coating based on niobium pentoxide exposed to a concentrated light flux. Glass Physics and Chemistry, 2011, 37, 445-449.	0.2	2
24	Ferroelectric domains in near-stoichiometric LiNbO ₃ by e-beam polarization reversal. Phase Transitions, 2011, 84, 797-803.	0.6	15
25	Physical and Chemical Principles of Obtaining Thermally Resistant Containers for Treatment of High Purity Niobium and Tantalum Compounds. Ferroelectrics, 2011, 424, 68-77.	0.3	0
26	Growth of Lithium Niobate Single Crystals from Granulated Charge. Integrated Ferroelectrics, 2011, 123, 148-152.	0.3	5
27	Effects of VTE Treatment on Composition of Lithium Tantalate Single Crystals. Ferroelectrics, 2011, 417, 46-52.	0.3	3
28	Micro- and nanostructures in lithium niobate single crystals doped with lanthanides. Crystallography Reports, 2010, 55, 811-814.	0.1	7
29	Periodic micro- and nanostructures in LiNbO3〈Gd〉 single crystals grown under unsteady-state conditions. Inorganic Materials, 2010, 46, 418-423.	0.2	2
30	Effect of high-intensity light on the micro- and nanostructuring and thermal expansion of Ta2O5 and Nb2O5 ceramics. Inorganic Materials, 2010, 46, 683-690.	0.2	3
31	Microstructure and elastic modulus of ceramic Li x Na1 â^' x NbO3 perovskite solid solutions prepared at 6 GPa. Inorganic Materials, 2010, 46, 1348-1352.	0.2	2
32	Investigation of Periodic Domain Structures in LiNbO3:Gd Single Crystals. Ferroelectrics, 2010, 398, 98-107.	0.3	1
33	FORMATION OF FRACTAL MICRO- AND NANO-STRUCTURES IN CERAMIC TANTALUM PENTOXIDE UNDER CONCENTRATED FLUX OF LIGHT AND THEIR EFFECT ON THERMAL EXPANSION. Integrated Ferroelectrics, 2009, 108, 89-97.	0.3	8
34	FRACTAL STRUCTURES IN SINGLE CRYSTALS OF FERROELECTRIC LITHIUM NIOBATE GROWN UNDER STRONGLY UNSTABLE CONDITIONS. Integrated Ferroelectrics, 2009, 109, 27-35.	0.3	1
35	Effect of growth conditions on the domain structure of LiNbO3〈Gd〉 single crystals. Inorganic Materials, 2008, 44, 305-310.	0.2	2
36	MICRO- AND NANO-STRUCTURES IN SINGLE CRYSTALS OF LITHIUM NIOBATE CONTAINING LANTHANIDE ADMIXTURES. Integrated Ferroelectrics, 2008, 102, 83-91.	0.3	1

#	Article	IF	CITATIONS
37	Research on Peculiarities of Growth Domain Structure of Doped LiNbO ₃ Single Crystals Depending on Growth Regimes. Ferroelectrics, 2008, 374, 41-49.	0.3	8
38	Domain structure and electrical properties of Gd-and Tm-doped lithium niobate single crystals. Inorganic Materials, 2007, 43, 68-72.	0.2	1
39	PTCR effect in Li0.12Na0.88Ta y Nb1â^'y O3 ferroelectric solid solutions. Inorganic Materials, 2007, 43, 281-286.	0.2	3

Electrical Conductivity and Phase Transitions in Ferroelectric Solid Solutions Li_{0.17}Na_{0.83}Đ¢Đ°_{Ñf}Nb_{1-Ñf}O₃ (y = 0 – 0.5) i@ligh Pressure. Solid State Phenomena, 0, 310, 6-13. 40 0