Yung-Kang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulinâ€Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angewandte Chemie - International Edition, 2011, 50, 7056-7060.	7.2	391
2	Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. Journal of Materials Chemistry, 2012, 22, 14403.	6.7	318
3	Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nature Communications, 2019, 10, 4421.	5.8	151
4	A New and Facile Method To Prepare Uniform Hollow MnO/Functionalized mSiO ₂ Core/Shell Nanocomposites. ACS Nano, 2011, 5, 4177-4187.	7.3	130
5	Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 2017, 139, 12670-12680.	6.6	125
6	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 2017, 8, 591.	5.8	110
7	Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency. Advanced Materials, 2011, 23, 5451-5455.	11.1	107
8	Facet-dependent photocatalysis of nanosize semiconductive metal oxides and progress of their characterization. Nano Today, 2018, 18, 15-34.	6.2	99
9	Niobium oxides: Correlation of acidity with structure and catalytic performance in sucrose conversion to 5-hydroxymethylfurfural. Journal of Catalysis, 2016, 338, 329-339.	3.1	92
10	Trimethylphosphine-Assisted Surface Fingerprinting of Metal Oxide Nanoparticle by ³¹ P Solid-State NMR: A Zinc Oxide Case Study. Journal of the American Chemical Society, 2016, 138, 2225-2234.	6.6	83
11	Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Materials Today, 2016, 19, 336-348.	8.3	67
12	Molecular nitrogen promotes catalytic hydrodeoxygenation. Nature Catalysis, 2019, 2, 1078-1087.	16.1	63
13	Mapping surface-modified titania nanoparticles with implications for activity and facet control. Nature Communications, 2017, 8, 675.	5.8	62
14	Antiferromagnetic Iron Nanocolloids: A New Generation in Vivo <i>T</i> ₁ ÂMRI Contrast Agent. Journal of the American Chemical Society, 2013, 135, 18621-18628.	6.6	61
15	Differentiating Surface Ce Species among CeO ₂ Facets by Solid-State NMR for Catalytic Correlation. ACS Catalysis, 2020, 10, 4003-4011.	5.5	59
16	Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH ₃ Synthesis at a High Rate over the Ru Catalyst. ACS Catalysis, 2020, 10, 5614-5622.	5.5	59
17	Superiority of Branched Side Chains in Spontaneous Nanowire Formation: Exemplified by Poly(3â€2â€methylbutylthiophene) for Highâ€Performance Solar Cells. Small, 2011, 7, 1098-1107.	5.2	57
18	One-step synthesis of degradable T ₁ -FeOOH functionalized hollow mesoporous silica nanocomposites from mesoporous silica spheres. Nanoscale, 2015, 7, 2676-2687.	2.8	43

Yung-Kang Peng

#	Article	IF	CITATIONS
19	Cooperative catalysis for the direct hydrodeoxygenation of vegetable oils into diesel-range alkanes over Pd/NbOPO ₄ . Chemical Communications, 2016, 52, 5160-5163.	2.2	43
20	Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of the American Chemical Society, 2021, 143, 9105-9112.	6.6	37
21	2D photocatalysts with tuneable supports for enhanced photocatalytic water splitting. Materials Today, 2020, 41, 34-43.	8.3	36
22	Engineering of Single Magnetic Particle Carrier for Living Brain Cell Imaging: A Tunable T ₁ -/T ₂ -/Dual-Modal Contrast Agent for Magnetic Resonance Imaging Application. Chemistry of Materials, 2017, 29, 4411-4417.	3.2	34
23	Unravelling the key role of surface features behind facet-dependent photocatalysis of anatase TiO ₂ . Chemical Communications, 2019, 55, 4415-4418.	2.2	34
24	Differentiating surface titanium chemical states of anatase TiO ₂ functionalized with various groups. Chemical Science, 2018, 9, 2493-2500.	3.7	31
25	Unravelling the true active site for CeO2-catalyzed dephosphorylation. Applied Catalysis B: Environmental, 2020, 264, 118508.	10.8	31
26	Oneâ€Step, Roomâ€Temperature Synthesis of Glutathioneâ€Capped Ironâ€Oxide Nanoparticles and their Application in In Vivo <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Small, 2014, 10, 3962-3969.	5.2	30
27	Unravelling the Role of Structural Geometry and Chemical State of Well-Defined Oxygen Vacancies on Pristine CeO ₂ for H ₂ O ₂ Activation. Journal of Physical Chemistry Letters, 2020, 11, 5390-5396.	2.1	30
28	Disclosing the Origin of Transition Metal Oxides as Peroxidase (and Catalase) Mimetics. ACS Applied Materials & Interfaces, 2022, 14, 22728-22736.	4.0	30
29	Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking. Small, 2022, 18, e2104844.	5.2	25
30	Multifunctional silica-coated iron oxide nanoparticles: a facile four-in-one system for in situ study of neural stem cell harvesting. Faraday Discussions, 2014, 175, 13-26.	1.6	24
31	Blue ordered/disordered Janus-type TiO ₂ nanoparticles for enhanced photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 22828-22839.	5.2	24
32	Probe-assisted NMR: Recent progress on the surface study of crystalline metal oxides with various terminated facets. Magnetic Resonance Letters, 2022, 2, 9-16.	0.7	23
33	Probeâ€Moleculeâ€Assisted NMR Spectroscopy: A Comparison with Photoluminescence and Electron Paramagnetic Resonance Spectroscopy as a Characterization Tool in Facetâ€Specific Photocatalysis. ChemCatChem, 2017, 9, 155-160.	1.8	22
34	Structure–Activity Correlations for BrÃ,nsted Acid, Lewis Acid, and Photocatalyzed Reactions of Exfoliated Crystalline Niobium Oxides. ChemCatChem, 2017, 9, 144-154.	1.8	22
35	Surface Fingerprinting of Faceted Metal Oxides and Porous Zeolite Catalysts by Probe-Assisted Solid-State NMR Approaches. Accounts of Chemical Research, 2021, 54, 2421-2433.	7.6	21
36	Importance of the structural integrity of a carbon conjugated mediator for photocatalytic hydrogen generation from water over a CdS〓carbon nanotube–MoS ₂ composite. Chemical Communications, 2016, 52, 13596-13599.	2.2	20

YUNG-KANG PENG

#	Article	IF	CITATIONS
37	Comprehensive study of medium-bandgap conjugated polymer merging a fluorinated quinoxaline with branched side chains for highly efficient and air-stable polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 20203-20212.	5.2	17
38	Nanoisozymes: The Origin behind Pristine CeO ₂ as Enzyme Mimetics. Chemistry - A European Journal, 2020, 26, 10598-10606.	1.7	16
39	Multifunctional Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles for Targeted Optical Imaging, <i>T</i> ₁ Magnetic Resonance Imaging and Photodynamic Therapy. Materials Express, 2011, 1, 136-143.	0.2	15
40	Chemical state tuning of surface Ce species on pristine CeO ₂ with 2400% boosting in peroxidase-like activity for glucose detection. Chemical Communications, 2020, 56, 7897-7900.	2.2	15
41	Mesoporous Silica Promoted Deposition of Bioinspired Polydopamine onto Contrast Agent: A Universal Strategy to Achieve Both Biocompatibility and Multiple Scale Molecular Imaging. Particle and Particle Systems Characterization, 2017, 34, 1600415.	1.2	13
42	Electronic‧tate Manipulation of Surface Titanium Activates Dephosphorylation Over TiO ₂ Near Room Temperature. Angewandte Chemie, 2021, 133, 16285-16291.	1.6	11
43	Bulk-to-nano regulation of layered metal oxide gears H2O2 activation pathway for its stoichiometric utilization in selective oxidation reaction. Applied Catalysis B: Environmental, 2022, 313, 121461.	10.8	11
44	Zincâ€Incorporated Microporous Molecular Sieve for Mild Catalytic Hydrolysis of γâ€Valerolactone: A New Selective Route for Biomass Conversion. ChemSusChem, 2018, 11, 4214-4218.	3.6	10
45	Electronic‧tate Manipulation of Surface Titanium Activates Dephosphorylation Over TiO ₂ Near Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 16149-16155.	7.2	9
46	A nonpolar solvent effect by CH/Ï€ interaction inside zeolites: characterization, mechanism and concept. Chemical Communications, 2018, 54, 13435-13438.	2.2	8
47	Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO2 Nanorods. Nanomaterials, 2020, 10, 1530.	1.9	6
48	Shape Regulation of CeO ₂ Nanozymes Boosts Reaction Specificity and Activity. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
49	Engineered core–shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents. Nanotechnology, 2018, 29, 015102.	1.3	5
50	Fast and sensitive immuno-PCR assisted by plasmonic magnetic nanoparticles. Applied Materials Today, 2021, 23, 101054.	2.3	2
51	Surface Coordination Chemistry of Nanomaterials and Catalysis. , 2021, , 204-227.		1