Chun-Hua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2198073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012, 208, 210-224.	7.8	2,052
2	Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 6365.	6.7	192
3	In Situ Generated Fireproof Gel Polymer Electrolyte with Li _{6.4} Ga _{0.2} La ₃ Zr ₂ O ₁₂ As Initiator and Ionâ€Conductive Filler. Advanced Energy Materials, 2019, 9, 1900611.	19.5	185
4	Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy and Environmental Science, 2011, 4, 2854.	30.8	157
5	A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries. Chemical Communications, 2018, 54, 4453-4456.	4.1	152
6	A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. Journal of Materials Chemistry A, 2017, 5, 19017-19024.	10.3	146
7	Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 14878-14888.	8.0	126
8	High-Strength Internal Cross-Linking Bacterial Cellulose-Network-Based Gel Polymer Electrolyte for Dendrite-Suppressing and High-Rate Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17809-17819.	8.0	121
9	Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. Energy Storage Materials, 2018, 11, 16-23.	18.0	119
10	A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Organic Electronics, 2014, 15, 641-645.	2.6	117
11	Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 10350-10354.	10.3	114
12	Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. Journal of Power Sources, 2018, 396, 533-541.	7.8	109
13	Highly sensitive room-temperature CO gas sensors: Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. Journal of Materials Chemistry, 2012, 22, 13204.	6.7	107
14	A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9629-9637.	10.3	101
15	Incorporating Flexibility into Stiffness: Selfâ€Grown Carbon Nanotubes in Melamine Sponges Enable A Lithiumâ€Metalâ€Anode Capacity of 15 mA h cm ^{â^'2} Cyclable at 15 mA cm ^{â^'2} . Advanc Materials, 2019, 31, e1805654.	ezh.0	95
16	Na[Ni _{0.4} Fe _{0.2} Mn _{0.4â^{~*}x} Ti _x]O ₂ : a cathode of high capacity and superior cyclability for Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 17268-17271.	10.3	91
17	Nanoporous Adsorption Effect on Alteration of the Li ⁺ Diffusion Pathway by a Highly Ordered Porous Electrolyte Additive for High-Rate All-Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23874-23882.	8.0	90
18	Realization of the Li ⁺ domain diffusion effect <i>via</i> constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 27304-27312.	10.3	86

#	Article	IF	CITATIONS
19	Surface Surgery of the Nickel-Rich Cathode Material LiNi _{0.815} Co _{0.15} Al _{0.035} O ₂ : Toward a Complete and Ordered Surface Layered Structure and Better Electrochemical Properties. ACS Applied Materials &: Interfaces, 2016, 8, 34879-34887.	8.0	80
20	From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan–PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38526-38537.	8.0	77
21	Competing with other polyanionic cathode materials for potassium-ion batteries <i>via</i> fine structure design: new layered KVOPO ₄ with a tailored particle morphology. Journal of Materials Chemistry A, 2019, 7, 15244-15251.	10.3	72
22	In Situ Lithiophilic Layer from H ⁺ /Li ⁺ Exchange on Garnet Surface for the Stable Lithium-Solid Electrolyte Interface. ACS Applied Materials & Interfaces, 2019, 11, 35030-35038.	8.0	70
23	<i>In situ</i> formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance. Journal of Materials Chemistry A, 2019, 7, 11513-11519.	10.3	67
24	Simultaneously Exfoliated Boron-Doped Graphene Sheets To Encapsulate Sulfur for Applications in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 9661-9670.	6.7	63
25	A vanadium-based metal–organic phosphate framework material K ₂ [(VO) ₂ (HPO ₄) ₂ (C ₂ O ₄)] as a cathode for potassium-ion batteries. Chemical Communications, 2019, 55, 659-662.	4.1	61
26	Hollow V ₂ O ₅ Nanoassemblies for High-Performance Room-Temperature Hydrogen Sensors. ACS Applied Materials & Interfaces, 2015, 7, 8480-8487.	8.0	59
27	Lithium chromium oxide modified spinel LiCrTiO4 with improved electrochemical properties. Journal of Materials Chemistry, 2012, 22, 20861.	6.7	57
28	Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification. Journal of Power Sources, 2018, 390, 13-19.	7.8	57
29	Interconnected CoFe ₂ O ₄ –Polypyrrole Nanotubes as Anode Materials for High Performance Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36927-36935.	8.0	56
30	Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces. Nanoscale, 2013, 5, 7017.	5.6	53
31	Role of Stress in the Self-Limiting Oxidation of Copper Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 20669-20672.	2.6	51
32	Porous carbon-coated NaTi ₂ (PO ₄) ₃ with superior rate and low-temperature properties. Journal of Materials Chemistry A, 2018, 6, 2365-2370.	10.3	51
33	A long lifespan potassium-ion full battery based on KVPO4F cathode and VPO4 anode. Journal of Power Sources, 2020, 451, 227739.	7.8	51
34	Cobalt Phosphide Nanoflake-Induced Flower-like Sulfur for High Redox Kinetics and Fast Ion Transfer in Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 49626-49635.	8.0	50
35	Enhancement of long stability of Li–S battery by thin wall hollow spherical structured polypyrrole based sulfur cathode. RSC Advances, 2014, 4, 21612-21618.	3.6	47
36	Three-dimensional porous Fe0.1V2O5.15 thin film as a cathode material for lithium ion batteries. Electrochimica Acta, 2012, 64, 81-86.	5.2	45

#	Article	IF	CITATIONS
37	Hollow sphere structured V ₂ O ₃ @C as an anode material for high capacity potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13261-13266.	10.3	45
38	Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. Electrochimica Acta, 2016, 196, 377-385.	5.2	44
39	Cobalt-substituted Na0.44Mn1-xCoxO2: phase evolution and a high capacity positive electrode for sodium-ion batteries. Electrochimica Acta, 2016, 213, 496-503.	5.2	43
40	<i>In situ</i> catalytic formation of graphene-like graphitic layer decoration on Na ₃ V _{2â^'x} Ga _x (PO ₄) ₃ (0 ≤i>x ≤0.6) for ultrafast and high energy sodium storage. Journal of Materials Chemistry A, 2019, 7, 4660-4667.	10.3	43
41	From nanomelting to nanobeads: nanostructured Sb _x Bi _{1â^x} alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 27041-27047.	10.3	43
42	Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification. Nano Energy, 2019, 61, 411-419.	16.0	42
43	High-areal-capacity thick cathode with vertically-aligned micro-channels for advanced lithium ion batteries. Energy Storage Materials, 2021, 39, 287-293.	18.0	41
44	Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ionics, 2015, 279, 11-17.	2.7	38
45	The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries. Electrochimica Acta, 2016, 220, 114-121.	5.2	38
46	Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 3400-3406.	8.0	37
47	Architecture controlled synthesis of flower-like In2O3 nanobundles with significantly enhanced ultraviolet scattering and ethanol sensing. CrystEngComm, 2012, 14, 5589.	2.6	36
48	Open mesoporous spherical shell structured Co3O4with highly efficient catalytic performance in Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 7600-7606.	10.3	36
49	A 3D Cu current collector with a biporous structure derived by a phase inversion tape casting method for stable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 17376-17385.	10.3	36
50	Facilitating Lithium-Ion Diffusion in Layered Cathode Materials by Introducing Li ⁺ /Ni ²⁺ Antisite Defects for High-Rate Li-Ion Batteries. Research, 2019, 2019, 2198906.	5.7	36
51	In-situ construction of lithiophilic interphase in vertical micro-channels of 3D copper current collector for high performance lithium-metal batteries. Energy Storage Materials, 2021, 34, 22-27.	18.0	35
52	<i>In situ</i> carbon coated flower-like VPO ₄ as an anode material for potassium-ion batteries. Chemical Communications, 2019, 55, 13916-13919.	4.1	33
53	Synthesis and electrochemical properties of high performance yolk-structured LiMn ₂ O ₄ microspheres for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 860-867.	10.3	32
54	Facile Synthesis of Diamino-Modified Graphene/Polyaniline Semi-Interpenetrating Networks with Practical High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 4946-4952.	8.0	30

#	Article	IF	CITATIONS
55	Trace ethanol as an efficient electrolyte additive to reduce the activation voltage of the Li ₂ S cathode in lithium-ion–sulfur batteries. Chemical Communications, 2019, 55, 10088-10091.	4.1	29
56	High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries. Journal of Alloys and Compounds, 2019, 786, 468-474.	5.5	28
57	Sulfone-assisted-NH4I as electrolyte additive with synergistic dissolution and catalysis effects on reducing the activation voltage of Li2S cathode. Chemical Engineering Journal, 2020, 398, 125608.	12.7	28
58	A high energy density full lithium-ion cell based on specially matched coulombic efficiency. Journal of Materials Chemistry A, 2016, 4, 4117-4124.	10.3	27
59	Surface Li ⁺ /K ⁺ Exchange toward Double-Gradient Modification of Layered Li-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 31477-31483.	8.0	27
60	C80 Calorimeter Studies of the Thermal Behavior of LiPF6 Solutions. Journal of Solution Chemistry, 2006, 35, 179-189.	1.2	26
61	Fabrication of nanosized metallic copper by electrochemical milling process. Journal of Materials Science, 2008, 43, 1492-1496.	3.7	26
62	Controlling uniform deposition of discharge products at the nanoscale for rechargeable Na–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 7238-7244.	10.3	26
63	A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries. Chemical Communications, 2020, 56, 6078-6081.	4.1	26
64	In situ catalytic formation of graphene decoration on Na ₃ V ₂ (PO ₄) ₃ particles for ultrafast and long-life sodium storage. Journal of Materials Chemistry A, 2016, 4, 16801-16804.	10.3	24
65	Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material. Journal of Alloys and Compounds, 2019, 791, 100-108.	5.5	24
66	High rate LiMn2O4/carbon nanotube composite prepared by a two-step hydrothermal process. Journal of Power Sources, 2014, 268, 491-497.	7.8	23
67	Vanadium-doped lithium-rich layered-structured cathode material Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ with a high specific capacity and improved rate performance. RSC Advances, 2016, 6, 30194-30198.	3.6	23
68	Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications. CrystEngComm, 2011, 13, 5956.	2.6	21
69	Hydrothermal synthesis of ultra-thin LiFePO4 platelets for Li-ion batteries. Journal of Materials Science, 2011, 46, 4906-4912.	3.7	21
70	Microregion Welding Strategy Prevents the Formation of Inactive Sulfur Species for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2021, 11, 2102024.	19.5	21
71	Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16279-16288.	8.0	21
72	Solid polymer electrolyte based on waterborne polyurethane for allâ€solidâ€state lithium ion batteries. Journal of Applied Polymer Science, 2017, 134, 45554.	2.6	20

#	Article	IF	CITATIONS
73	A core–shell cathode substrate for developing high-loading, high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 24841-24847.	10.3	20
74	In Situ-Formed Cr ₂ O ₃ Coating on NaCrO ₂ with Improved Sodium Storage Performance. ACS Applied Materials & Interfaces, 2020, 12, 44671-44678.	8.0	20
75	Hollow-Sphere-Structured Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇)/C as a Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25972-25980.	8.0	20
76	A microstructure engineered perovskite super anode with Li-storage life of exceeding 10,000 cycles. Nano Energy, 2022, 94, 106972.	16.0	19
77	Suppressing the Unfavorable Surface Layer Growth on Na _{0.44} MnO ₂ Cathode by a NaTi ₂ (PO ₄) ₃ Coating To Improve Cycling Stability and Ultrahigh Rate Capability. ACS Applied Energy Materials, 2019, 2, 7497-7503.	5.1	18
78	Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries. Energy Storage Materials, 2022, 45, 851-860.	18.0	18
79	Optical and electrical properties of ink-jet printed indium–tin-oxide nanoparticle films. Materials Letters, 2011, 65, 3336-3339.	2.6	17
80	La ₄ NiLiO ₈ -Shielded Layered Cathode Materials for Emerging High-Performance Safe Batteries. ACS Applied Materials & Interfaces, 2020, 12, 826-835.	8.0	17
81	Introducing a conductive pillar: a polyaniline intercalated layered titanate for high-rate and ultra-stable sodium and potassium ion storage. Chemical Communications, 2020, 56, 8392-8395.	4.1	17
82	Electrochemical performances of nano-Co3O4 with different morphologies as anode materials for Li-ion batteries. Ionics, 2012, 18, 591-597.	2.4	16
83	One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochimica Acta, 2014, 133, 515-521.	5.2	16
84	A comparative study on nanocrystalline layered and crystalline cubic TiP ₂ O ₇ for rechargeable Li/Na/K alkali metal batteries. Journal of Materials Chemistry A, 2018, 6, 15230-15236.	10.3	16
85	Graphene encircled KFeSO ₄ F cathode composite for high energy density potassium-ion batteries. Chemical Communications, 2020, 56, 10050-10053.	4.1	16
86	Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction. Journal of Colloid and Interface Science, 2012, 369, 129-133.	9.4	15
87	Solvothermal synthesized LiMn _{1â~'x} Fe _x PO ₄ @C nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. RSC Advances, 2016, 6, 52271-52278.	3.6	15
88	Ternary Porous Sulfur/Dual-Carbon Architectures for Lithium/Sulfur Batteries Obtained Continuously and on a Large Scale via an Industry-Oriented Spray-Pyrolysis/Sublimation Method. ACS Applied Materials & Interfaces, 2016, 8, 25251-25260.	8.0	15
89	Synthesis of porous carbon-coated NaTi ₂ (PO ₄) ₃ nanocubes with a high-yield and superior rate properties. Journal of Materials Chemistry A, 2018, 6, 24503-24508.	10.3	15
90	NiO functionalized Co3O4 hetero-nanocomposites with a novel apple-like architecture for CO gas sensing applications. Materials Letters, 2019, 255, 126508.	2.6	15

#	Article	IF	CITATIONS
91	High ICE Hard Carbon Anodes for Lithium-Ion Batteries Enabled by a High Work Function. ACS Applied Materials & Interfaces, 2021, 13, 46813-46820.	8.0	15
92	A chromium oxide solution modified lithium titanium oxide with much improved rate performance. Journal of Materials Chemistry A, 2013, 1, 15310.	10.3	14
93	Performance of Na0.44Mn1â^'xMxO2 (M = Ni, Mg; 0 ≤ ≤0.44) as a cathode for rechargeable sodium ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 2979-2988.	2.5	13
94	Facile growth of silver crystals with greatly varied morphologies by PEO-PPO-PEO tri-block copolymers. CrystEngComm, 2012, 14, 2871.	2.6	12
95	A facile surface treatment utilizing binary mixtures of ammonium salts and polar solvents for multiply enhancing thermoelectric PEDOT: PSS films. Journal of Polymer Science Part A, 2014, 52, 3303-3306.	2.3	12
96	Superassembling of Bi ₂ Te ₃ hierarchical nanostructures for enhanced thermoelectric performance. Journal of Materials Chemistry A, 2015, 3, 10459-10465.	10.3	12
97	Enhanced thermoelectricity of three-dimensionally mesostructured Bi _x Sb _{2â^'x} Te ₃ nanoassemblies: from micro-scaled open gaps to isolated sealed mesopores. Nanoscale, 2017, 9, 3283-3292.	5.6	12
98	Comparative study of the electrochemical properties of LiNi0.5Mn1.5O4 doped by bivalent ions (Cu2+,) Tj ETQq(0.0.0 rgBT 2.5	/Overlock 10
99	A Lithiophilic 3D Conductive Skeleton for High Performance Li Metal Battery. ACS Applied Energy Materials, 2020, 3, 7265-7271.	5.1	12
100	Highly transparent cerium doped gadolinium gallium aluminum garnet ceramic prepared with precursors fabricated by ultrasonic enhanced chemical co-precipitation. Ultrasonics Sonochemistry, 2017, 39, 792-797.	8.2	11
101	Self-Template Synthesis of NaCrO ₂ Submicrospheres for Stable Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 12203-12210.	8.0	11
102	Effect of Ionic Liquid on Structure and Properties of Polysquaraines. Macromolecules, 2012, 45, 3010-3016.	4.8	10
103	Synthesis of graphene-modified Li3V2(PO4)3 with superior electrochemical properties via a catalytic solid-state-reaction process. Journal of Alloys and Compounds, 2017, 717, 1-7.	5.5	10
104	A novel lithium-ion battery comprising Li-rich@Cr2O5 composite cathode and Li4Ti5O12 anode with controllable coulombic efficiency. Science China Materials, 2017, 60, 839-848.	6.3	10
105	Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. Journal of Solid State Electrochemistry, 2018, 22, 3431-3442.	2.5	10
106	A hydrogel-enabled free-standing polypyrrole cathode film for potassium ion batteries with high mass loading and low-temperature stability. Journal of Materials Chemistry A, 2021, 9, 15045-15050.	10.3	10
107	Active-Site-Specific Structural Engineering Enabled Ultrahigh Rate Performance of the NaLi ₃ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11255-11263.	8.0	10
108	Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials. Materials Science in Semiconductor Processing, 2022, 150, 106944.	4.0	10

#	Article	IF	CITATIONS
109	Nonstoichiometric Li1±x Ni0.5Mn1.5O4 with different structures and electrochemical properties. Science Bulletin, 2012, 57, 4176-4180.	1.7	9
110	Smart assembling of multi-scaled functional interfaces in thermoelectric Ga ₂ Te ₃ /Te hetero-nanocomposites. Nanoscale, 2014, 6, 14280-14288.	5.6	9
111	Improving the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by double-layer coating with Li2TiO3 for lithium-ion batteries. Ionics, 2016, 22, 2235-2238.	2.4	9
112	Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs. Polymers, 2020, 12, 21.	4.5	9
113	Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 Ceramic Based Lithiumâ€Sulfur Batteries with High Cycling Stability Enabled by a Dual Confinement Effect for Polysulfides. ChemElectroChem, 2020, 7, 4093-4100.	3.4	9
114	Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins. Polymers, 2020, 12, 2510.	4.5	9
115	<i>In situ</i> coating of a lithiophilic interphase on a biporous Cu scaffold with vertical microchannels for dendrite-free Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 13642-13652.	10.3	9
116	Transparent SiO2-Ag core-satellite nanoparticle assembled layer for plasmonic-based chemical sensors. Applied Physics Letters, 2012, 100, 223101.	3.3	8
117	Synthesis of different CuO nanostructures by a new catalytic template method as anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 57300-57308.	3.6	8
118	Laser co-ablation of bismuth antimony telluride and diamond-like carbon nanocomposites for enhanced thermoelectric performance. Journal of Materials Chemistry A, 2018, 6, 982-990.	10.3	8
119	3D Porous NaTi 2 (PO 4) 3 with Long Life, Superior Rate, and Lowâ€Temperature Properties. Energy Technology, 2019, 7, 1900386.	3.8	8
120	Spray drying derived wrinkled pea-shaped carbon-matrixed KVP2O7 as a cathode material for potassium-ion batteries. Journal of Alloys and Compounds, 2021, 884, 161126.	5.5	8
121	Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive. Journal of Applied Electrochemistry, 2009, 39, 1105-1110.	2.9	7
122	The Influence of Electrode Microstructure on the Performance of Free-Standing Cathode for Aprotic Lithium-Oxygen Battery. Jom, 2016, 68, 2585-2592.	1.9	7
123	Improving the rate and low-temperature performance of LiFePO4 by tailoring the form of carbon coating from amorphous to graphene-like. Journal of Solid State Electrochemistry, 2018, 22, 797-805.	2.5	7
124	Advanced Lithium Ion Sulfur Battery Based on Spontaneous Electrochemical Exfoliation/Lithiation of Graphite in Nonaqueous Electrolytes. ACS Applied Energy Materials, 2019, 2, 3798-3804.	5.1	7
125	Au–Pt–Pd spherically self-assembled nano-sieves as SERS sensors. Journal of Alloys and Compounds, 2020, 843, 155885.	5.5	7
126	Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. Nanoscale, 2021, 13, 763-775.	5.6	7

#	Article	IF	CITATIONS
127	Hollow sphere structured Co ₃ V ₂ O ₈ as a half-conversion anode material with ultra-high pseudocapacitance effect for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 21995-22001.	10.3	7
128	Highly Graphitic Nâ€Doped Biomassâ€Derived Hard Carbon with a Low Operating Potential for Potassiumâ€lon Batteries. Energy Technology, 2021, 9, 2100644.	3.8	7
129	Theoretical study of electrical and electrochemical properties of cyclopentanepentaone and its dicyanomethylene derivatives. International Journal of Quantum Chemistry, 2007, 107, 637-646.	2.0	6
130	Electrical Properties of NASICON-type Structured Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Prepared by 1,2-Propylene glycol-assisted Sol-gel Method. Chinese Journal of Chemical Physics, 2012, 25, 703-707.	1.3	6
131	Controlled synthesis and CO sensing potentials of size-tunable highly-uniform mesoporous Co3O4 nanospheres. Journal of Alloys and Compounds, 2020, 816, 152524.	5.5	6
132	A first report on ex-situ synthesis and utilization of pure La4NiLiO8 in emerging high-performance safe batteries. Journal of Alloys and Compounds, 2020, 821, 153208.	5.5	6
133	Controlled synthesis of Pt and Co3O4 dual-functionalized In2O3 nanoassemblies for room temperature detection of carbon monoxide. New Journal of Chemistry, 2018, 42, 16478-16482.	2.8	5
134	Structural and Optical Properties of Novel In2O3 Nanoparticle-Assembled Nanorods. Plasmonics, 2010, 5, 233-239.	3.4	4
135	Protected Sulfur Cathode with Mixed Conductive Coating Layer for Lithium Sulfur Battery. Jom, 2016, 68, 2601-2606.	1.9	4
136	Biomimetic mitochondrial nanostructures boost the battery performance. Sustainable Energy and Fuels, 2019, 3, 2015-2023.	4.9	4
137	Pt–Pd Floating Nanoarrays Templated on Pluronic F127 Micelles as Effective Surface-Enhanced Raman Scattering Sensors. ACS Applied Nano Materials, 2019, 2, 2515-2524.	5.0	4
138	Introducing a cell moisturizer: organogel nano-beads with rapid response to electrolytes for Prussian white analogue based non-aqueous potassium ion battery. Chemical Communications, 2020, 56, 9719-9722.	4.1	4
139	Cr2P2O7 as a Novel Anode Material for Sodium and Lithium Storage. Materials, 2020, 13, 3139.	2.9	4
140	Periodic DLC Interlayer-Functionalized Bi–Sb–Te-Based Nanostructures: A Novel Concept for Building Heterogenized Superarchitectures with Enhanced Thermoelectric Performance. ACS Applied Materials & Interfaces, 2022, 14, 9307-9317.	8.0	4
141	Ultra-stable potassium storage and hybrid mechanism of perovskite fluoride KFeF ₃ /rGO. Nanoscale, 2022, 14, 5347-5355.	5.6	4
142	An electron microscopic investigation of structural variation of V2O5 fibers after working as ethanol sensors. Applied Physics Letters, 2008, 93, 173510.	3.3	3
143	Urchin-like Co3O4 Nanostructure and Their Electrochemical Behavior in Rechargeable Lithium Ion Battery. Chinese Journal of Chemical Physics, 2011, 24, 343-347.	1.3	3
144	Improving interfacial electrochemistry of LiNi0.5Mn1.5O4 cathode coated by Mn3O4. Chinese Journal of Chemical Physics, 2020, 33, 485-490.	1.3	3

#	Article	IF	CITATIONS
145	Communication—Synthesis of Highly-Branched Silver Nanocrystals for EMI Shielding Applications. Journal of the Electrochemical Society, 2021, 168, 012505.	2.9	3
146	Submicrometer Rod-Structured Na ₇ V ₄ (P ₂ O ₇) ₄ (PO ₄)/C as a Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10298-10305.	5.1	3
147	Nanosized Spinel Li4Ti5O12Anode Material Prepared by Gel-polymer Method using Furfuryl Alcohol as Polymerizable Solvent. Chinese Journal of Chemical Physics, 2012, 25, 457-462.	1.3	2
148	Nano-Li3V2(PO4)3/C Synthesized by Thermal Polymerization Method as Cathode Material for Lithium Ion Batteries. Chinese Journal of Chemical Physics, 2016, 29, 699-702.	1.3	2
149	Poly(vinyl alcohol)â€controlled synthesis of monodispersed crosslinked poly(methyl methacrylate) microparticles with significantly improved mechanical properties. Polymer International, 2019, 68, 1315-1321.	3.1	2
150	X-ray effects on the oxidation of Cu nanoparticles. Materials Letters, 2011, 65, 1822-1824.	2.6	1
151	Catalytic Effects of High-Valent Transition Metal Oxides on Different Carbonization Behaviours of Polyvinyl Alcohol. ChemistrySelect, 2017, 2, 9450-9453.	1.5	1
152	Comparative study of the electrochemical properties of P4332 and Fd3m space group of LiNi0.45Cu0.05Mn1.5O4 cathode materials. SN Applied Sciences, 2019, 1, 1.	2.9	1
153	Lithiophilic NiO Nanoarrays-Modified Ni Skeletons with Vertical Channels for High-Loading Li Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 050536.	2.9	1
154	VN and SeS ₂ embedded porous carbon-nanofiber film as a free-standing electrode for improved Li–SeS ₂ batteries. Chemical Communications, 0, , .	4.1	1
155	Copolymer and platinum ion assisted growth of functionalized gold nanonests. New Journal of Chemistry, 2015, 39, 110-114.	2.8	0