BartÅ, omiej Furman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/219787/publications.pdf

Version: 2024-02-01

567281 580821 42 706 15 25 citations g-index h-index papers 44 44 44 616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Selective Approaches to α―and βâ€Arylated Vinyl Ethers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
2	Photo-Fries-type rearrangement of cyclic enamides. An efficient route to structurally diverse five-membered enaminones. Chemical Communications, 2022, 58, 1898-1901.	4.1	3
3	Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams. Beilstein Journal of Organic Chemistry, 2021, 17, 115-123.	2.2	4
4	Concise synthesis of bicyclic iminosugars via reductive functionalization of sugar-derived lactams and subsequent RCM reaction. Organic and Biomolecular Chemistry, 2021, 19, 6842-6846.	2.8	3
5	Reductive Functionalization of Amides in Synthesis and for Modification of Bioactive Compounds. Frontiers in Chemistry, 2021, 9, 655849.	3.6	36
6	A Convenient Approach towards the Synthesis of ADMDP Type Iminosugars and Nojirimycin Derivatives from Sugar-Derived Lactams. Molecules, 2021, 26, 5459.	3.8	0
7	Synthesis of \hat{l}^2 -lactams via diastereoselective, intramolecular Kinugasa reactions. Organic and Biomolecular Chemistry, 2020, 18, 2852-2860.	2.8	5
8	Beyond the Tebbe Olefination: Direct Transformation of Esters into Ketones or Alkenes. Synlett, 2020, 31, 730-736.	1.8	2
9	Overcoming inaccessibility of fluorinated imines $\hat{a} \in \text{``}$ synthesis of functionalized amines from readily available fluoroacetamides. Chemical Communications, 2019, 55, 9436-9439.	4.1	12
10	Bypassing the stereoselectivity issue: transformations of Kinugasa adducts from chiral alkynes and non-chiral acyclic nitrones. Organic and Biomolecular Chemistry, 2019, 17, 6251-6268.	2.8	7
11	Synthesis of Monobactams via the Diastereoselective Kinugasa Reaction. Synthesis, 2018, 50, 1991-2000.	2.3	6
12	Asymmetric Synthesis of Cyclic Nitrones <i>via</i> Organocatalytic Michael Addition of Aldehydes to Nitroolefins and Subsequent Reductive Cyclization ChemistrySelect, 2017, 2, 2670-2676.	1.5	11
13	Formal synthesis of Thienamycin. Journal of Antibiotics, 2017, 70, 781-787.	2.0	7
14	A new synthesis of highly functionalized cyclohexenes via a vinylogous Ferrier-Petasis cyclization reaction. Tetrahedron, 2017, 73, 7030-7041.	1.9	2
15	Studies on the Enantioselective Kinugasa Reaction: Efficient Synthesis of βâ€Lactams Catalyzed by <i>N</i> â€PINAP/CuX Complexes. European Journal of Organic Chemistry, 2016, 2016, 2212-2219.	2.4	21
16	Flexible synthesis of fused piperidinones and application in the synthesis of (±)-myrtine. Tetrahedron, 2016, 72, 7125-7134.	1.9	3
17	1,3-Dipolar cycloaddition of a cyclic nitrone derived from 2-deoxy-D-ribose to $\hat{l}\pm,\hat{l}^2$ -unsaturated lactones: An entry to carbapenem antibiotics. Carbohydrate Research, 2016, 433, 89-96.	2.3	7
18	Diastereoselective synthesis of \hat{l}^2 -lactams via Kinugasa reaction of acyclic chiral nitrones. Tetrahedron: Asymmetry, 2016, 27, 12-21.	1.8	12

#	Article	IF	Citations
19	Synthesis of Thienamycin methyl ester from 2-deoxy-d-ribose via Kinugasa reaction. Journal of Antibiotics, 2016, 69, 164-168.	2.0	12
20	Approach to Monobactams and Nocardicins via Diastereoselective Kinugasa Reaction. Journal of Organic Chemistry, 2015, 80, 12038-12046.	3.2	15
21	Synthesis of Polyhydroxylated Piperidine and Pyrrolidine Peptidomimetics via One-Pot Sequential Lactam Reduction/JoulliA©â€"Ugi Reaction. Journal of Organic Chemistry, 2015, 80, 3621-3633.	3.2	44
22	Sugar-derived cyclic imines: one-pot synthesis and direct functionalization. Tetrahedron, 2014, 70, 1880-1888.	1.9	40
23	Synthesis of Polyhydroxylated Quinolizidine and Indolizidine Scaffolds from Sugar-Derived Lactams via a One-Pot Reduction/Mannich/Michael Sequence. Journal of Organic Chemistry, 2014, 79, 10487-10503.	3.2	33
24	Acid catalyzed rearrangement of vinyl and ketene acetals. Tetrahedron, 2014, 70, 1651-1658.	1.9	11
25	Kinugasa reaction: an â€~ugly duckling' of β-lactam chemistry. Tetrahedron, 2014, 70, 7817-7844.	1.9	71
26	Thermal and Sc(OTf)3 catalyzed 1,3-dipolar cycloaddition of open-chain nitrones to $\hat{l}\pm,\hat{l}^2$ -unsaturated lactones: combined experimental and computational studies. Tetrahedron: Asymmetry, 2013, 24, 89-103.	1.8	12
27	A practical preparation of the key intermediate for penems and carbapenems synthesis. Journal of Antibiotics, 2013, 66, 161-163.	2.0	9
28	Practical One-Pot Synthesis of Protected l-Glyceraldehyde Derivatives. Synthesis, 2012, 44, 2695-2698.	2.3	4
29	An Entry to the Carbapenem Antibiotic Scaffold via the Asymmetric Kinugasa Reaction. Synthesis, 2012, 44, 2825-2839.	2.3	23
30	Synthesis of N,4-diaryl substituted ?-lactams via Kinugasa cycloaddition/rearrangement reaction. Tetrahedron, 2012, 68, 10806-10817.	1.9	18
31	A Formal Synthesis of Ezetimibe via Cycloaddition/Rearrangement Cascade Reaction. Journal of Organic Chemistry, 2011, 76, 6931-6936.	3.2	38
32	Direct, Catalytic Synthesis of Carbapenams via Cycloaddition/Rearrangement Cascade Reaction: Unexpected Acetylenes' Structure Effect. Journal of Organic Chemistry, 2010, 75, 7580-7587.	3.2	58
33	Ferrierâ^'Petasis Rearrangement of 4-(Vinyloxy)azetidin-2-ones: An Entry to Carbapenams and Carbacephams. Journal of Organic Chemistry, 2010, 75, 6990-6993.	3.2	10
34	Structureâ^'Chiroptical Properties Relationship of Carbapenams by Experiment and Theory. Journal of Organic Chemistry, 2010, 75, 7219-7226.	3.2	18
35	An Enantioselective Synthesis of 3,4â∈Benzoâ∈5â€oxacephams. European Journal of Organic Chemistry, 2009, 2009, 338-341.	2.4	18
36	Diastereoselective Synthesis of Carbapenams via Kinugasa Reaction. Journal of Organic Chemistry, 2008, 73, 7402-7404.	3.2	43

#	Article	IF	CITATIONS
37	The fluoride ion-induced intramolecular conjugate addition of propargylsilanes to dihydropyridones. A novel method for the stereoselective construction of azabicyclic ring systems. Tetrahedron, 2005, 61, 8641-8647.	1.9	11
38	Rhodium-Catalyzed Intramolecular Conjugate Addition of Vinylstannanes to 2,3-Dihydro-4-pyridones. An Efficient Route to Stereoselective Construction of Indolizidines. Organic Letters, 2005, 7, 1725-1727.	4.6	29
39	Structure-Chiroptical Properties Relationship in Oxabicyclic \hat{l}^2 -Lactam Derivatives. Enantiomer, 2002, 7, 107-114.	0.5	17
40	Conformation of chiral alkoxyallenes by proton NMR spectroscopy. Perkin Transactions II RSC, 2000, , 61-67.	1.1	3
41	Stereochemical model of [2+2]cycloaddition of chlorosulfonyl isocyanate to chiral vinyl ethers. Journal of the Chemical Society Perkin Transactions II, 1999, , 217-224.	0.9	15
42	Selective Approaches to α―and βâ€Arylated Vinyl Ethers. Angewandte Chemie, 0, , .	2.0	0