
Sebastian A J Zaat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. Frontiers in Oral Health, 2022, 3, 851786.	3.0	4
2	The impact of bacterial contamination on the host response towards fully absorbable poly-4-hydroxybutyrate and nonabsorbable polypropylene pelvic floor implants. Materials Today Bio, 2022, 15, 100268.	5.5	5
3	Photochemical Internalization as a New Strategy to Enhance Efficacy of Antimicrobial Agents Against Intracellular Infections. Methods in Molecular Biology, 2022, 2451, 671-689.	0.9	Ο
4	3D-Printed Gentamicin-Releasing Poly-Îμ-Caprolactone Composite Prevents Fracture-Related Staphylococcus aureus Infection in Mice. Pharmaceutics, 2022, 14, 1363.	4.5	9
5	Coupling Additive Manufacturing with Hot Melt Extrusion Technologies to Validate a Ventilator-Associated Pneumonia Mouse Model. Pharmaceutics, 2021, 13, 772.	4.5	7
6	Interlaboratory study for the evaluation of three microtiter plate-based biofilm quantification methods. Scientific Reports, 2021, 11, 13779.	3.3	24
7	Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. International Journal of Molecular Sciences, 2021, 22, 10059.	4.1	7
8	Multiplexed detection and differentiation of bacterial enzymes and bacteria by color-encoded sensor hydrogels. Bioactive Materials, 2021, 6, 4286-4300.	15.6	22
9	In Vitro 3D Staphylococcus aureus Abscess Communities Induce Bone Marrow Cells to Expand into Myeloid-Derived Suppressor Cells. Pathogens, 2021, 10, 1446.	2.8	6
10	Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm, 2020, 2, 100010.	3.8	50
11	Dendritic Cells Internalize Staphylococcus aureus More Efficiently than Staphylococcus epidermidis, but Do Not Differ in Induction of Antigen-Specific T Cell Proliferation. Microorganisms, 2020, 8, 19.	3.6	9
12	Combined Effect of Naturally-Derived Biofilm Inhibitors and Differentiated HL-60 Cells in the Prevention of Staphylococcus aureus Biofilm Formation. Microorganisms, 2020, 8, 1757.	3.6	9
13	In Vitro Bacterial Adhesion and Biofilm Formation on Fully Absorbable Poly-4-hydroxybutyrate and Nonabsorbable Polypropylene Pelvic Floor Implants. ACS Applied Materials & Interfaces, 2020, 12, 53646-53653.	8.0	35
14	Three-Dimensional <i>In Vitro</i> Staphylococcus aureus Abscess Communities Display Antibiotic Tolerance and Protection from Neutrophil Clearance. Infection and Immunity, 2020, 88, .	2.2	16
15	Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). International Journal of Molecular Sciences, 2020, 21, 8967.	4.1	14
16	Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183282.	2.6	20
17	Current Concepts of Osteomyelitis. American Journal of Pathology, 2020, 190, 1151-1163.	3.8	61
18	Recommendations for design and conduct of preclinical in vivo studies of orthopedic deviceâ€related infection Journal of Orthopaedic Research, 2019, 37, 271-287	2.3	38

SEBASTIAN A J ZAAT

#	Article	IF	CITATIONS
19	A dual functional boneâ€defectâ€filling material with sequential antibacterial and osteoinductive properties for infected bone defect repair. Journal of Biomedical Materials Research - Part A, 2019, 107, 2360-2370.	4.0	21
20	C-Reactive Protein Promotes Inflammation through FcÎ ³ R-Induced Glycolytic Reprogramming of Human Macrophages. Journal of Immunology, 2019, 203, 225-235.	0.8	30
21	Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations. Macromolecular Bioscience, 2019, 19, e1800384.	4.1	66
22	The Nature of Antibacterial Adaptive Immune Responses against Staphylococcus aureus Is Dependent on the Growth Phase and Extracellular Peptidoglycan. Infection and Immunity, 2019, 88, .	2.2	6
23	A Zebrafish Embryo Model for In Vivo Visualization and Intravital Analysis of Biomaterial-associated Staphylococcus aureus Infection. Journal of Visualized Experiments, 2019, , .	0.3	2
24	Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. International Journal of Antimicrobial Agents, 2019, 53, 143-151.	2.5	39
25	In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia, 2018, 70, 12-24.	8.3	97
26	The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science Translational Medicine, 2018, 10, .	12.4	358
27	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
28	Antimicrobial peptide modification of biomaterials using supramolecular additives. Journal of Polymer Science Part A, 2018, 56, 1926-1934.	2.3	21
29	Photochemical internalization enhances cytosolic release of antibiotic and increases its efficacy against staphylococcal infection. Journal of Controlled Release, 2018, 283, 214-222.	9.9	13
30	Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2404-2415.	2.6	59
31	Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2416-2427.	2.6	29
32	Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017, 140, 1-15.	11.4	170
33	The zebrafish embryo as a model to quantify early inflammatory cell responses to biomaterials. Journal of Biomedical Materials Research - Part A, 2017, 105, 2522-2532.	4.0	11
34	Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation. Data in Brief, 2017, 13, 385-389.	1.0	7
35	Controlled Release of LLâ€37â€Derived Synthetic Antimicrobial and Antiâ€Biofilm Peptides SAAPâ€145 and SAAPâ€276 Prevents Experimental Biomaterialâ€Associated <i>Staphylococcus aureus</i> Infection. Advanced Functional Materials, 2017, 27, 1606623.	14.9	51
36	Serum IgA Immune Complexes Promote Proinflammatory Cytokine Production by Human Macrophages, Monocytes, and Kupffer Cells through FcαRI〓TLR Cross-Talk. Journal of Immunology, 2017, 199, 4124-4131.	0.8	51

SEBASTIAN A J ZAAT

#	Article	IF	CITATIONS
37	Antimicrobial Peptides in Biomedical Device Manufacturing. Frontiers in Chemistry, 2017, 5, 63.	3.6	148
38	Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Reviews, 2016, 1, 89-99.	4.1	131
39	Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Frontiers in Cell and Developmental Biology, 2016, 4, 111.	3.7	139
40	A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. Journal of Controlled Release, 2015, 209, 47-56.	9.9	63
41	Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. Journal of Clinical and Translational Research, 2015, 1, 140-167.	0.3	118
42	Staphylococcus epidermidis originating from titanium implants infects surrounding tissue and immune cells. Acta Biomaterialia, 2014, 10, 5202-5212.	8.3	66
43	Convenient Preparation of Bactericidal Hydrogels by Covalent Attachment of Stabilized Antimicrobial Peptides Using Thiol–ene Click Chemistry. ACS Macro Letters, 2014, 3, 477-480.	4.8	64
44	Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface. Science Translational Medicine, 2012, 4, 153rv10.	12.4	575
45	Cyclic Tritrpticin Analogs with Distinct Biological Activities. Probiotics and Antimicrobial Proteins, 2011, 3, 132-143.	3.9	6
46	How honey kills bacteria. FASEB Journal, 2010, 24, 2576-2582.	0.5	353
47	Peri-Implant Tissue Is an Important Niche for Staphylococcus epidermidis in Experimental Biomaterial-Associated Infection in Mice. Infection and Immunity, 2007, 75, 1129-1136.	2.2	50
48	Mycoplasma pneumoniae P1 Type 1- and Type 2-Specific Sequences within the P1 Cytadhesin Gene of Individual Strains. Infection and Immunity, 2001, 69, 5612-5618.	2.2	52
49	Subcutaneous abscess formation around catheters induced by viable and nonviableStaphylococcus epidermidis as well as by small amounts of bacterial cell wall components. Journal of Biomedical Materials Research Part B, 2000, 50, 546-556.	3.1	35
50	Cross-linking and characterisation of gelatin matrices for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 225-243.	3.5	270