Edward A Laird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197833/publications.pdf

Version: 2024-02-01

35 papers 4,609 citations

331670 21 h-index 377865 34 g-index

37 all docs

37 does citations

37 times ranked

3707 citing authors

#	Article	IF	CITATIONS
1	Nongalvanic Calibration and Operation of a Quantum Dot Thermometer. Physical Review Applied, 2021, $15,\ldots$	3.8	6
2	Measuring the Thermodynamic Cost of Timekeeping. Physical Review X, 2021, 11, .	8.9	26
3	Circuit Quantum Electrodynamics with Carbon-Nanotube-Based Superconducting Quantum Circuits. Physical Review Applied, 2021, 15, .	3.8	16
4	Radio-frequency characterization of a supercurrent transistor made of a carbon nanotube. Materials for Quantum Technology, 2021, 1, 035003.	3.1	0
5	Can the displacemon device test objective collapse models?. AVS Quantum Science, 2021, 3, 045603.	4.9	4
6	A coherent nanomechanical oscillator driven by single-electron tunnelling. Nature Physics, 2020, 16, 75-82.	16.7	55
7	Machine learning enables completely automatic tuning of a quantum device faster than human experts. Nature Communications, 2020, 11, 4161.	12.8	42
8	Sensitive radiofrequency readout of quantum dots using an ultra-low-noise SQUID amplifier. Journal of Applied Physics, 2020, 127, .	2.5	15
9	Radio-frequency optomechanical characterization of a silicon nitride drum. Scientific Reports, 2020, 10, 1654.	3.3	10
10	Efficiently measuring a quantum device using machine learning. Npj Quantum Information, 2019, 5 , .	6.7	39
11	Measuring carbon nanotube vibrations using a single-electron transistor as a fast linear amplifier. Applied Physics Letters, 2018, 113, .	3.3	8
12	Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator. Physical Review X, 2018, 8, .	8.9	27
13	Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet. Physical Review Letters, 2017, 119, 147701. Spin Resonance Clock Transition of the Endohedral Fullerene <mml:math< td=""><td>7.8</td><td>38</td></mml:math<>	7.8	38
14	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">N</mml:mi </mml:mrow><mml:mprescripts></mml:mprescripts><mml:none /><mml:mrow><mml:mn>15</mml:mn></mml:mrow></mml:none </mml:mmultiscripts><mml:mi>@</mml:mi><mml:msub></mml:msub></mml:mrow>	7.8 <mml:mro< td=""><td>20 ow><mml:mi< td=""></mml:mi<></td></mml:mro<>	20 ow> <mml:mi< td=""></mml:mi<>
15	mathvariant="normal">C <mml:mrow><mml:mn>60</mml:mn></mml:mrow> <td>ub>2.5</td> <td>:mrow></td>	ub>2.5	:mrow>
16	Hyperfine and Spin-Orbit Coupling Effects on Decay of Spin-Valley States in a Carbon Nanotube. Physical Review Letters, 2017, 118, 177701.	7.8	11
17	Keeping perfect time with caged atoms. IEEE Spectrum, 2017, 54, 34-39.	0.7	2
18	Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching. Physical Review Applied, 2016, 5, .	3.8	44

#	Article	IF	CITATIONS
19	Photon-assisted tunneling and charge dephasing in a carbon nanotube double quantum dot. Physical Review B, $2016, 93, .$	3.2	13
20	Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity. Physical Review Letters, 2016, 117, 170801.	7.8	32
21	Quantum transport in carbon nanotubes. Reviews of Modern Physics, 2015, 87, 703-764.	45.6	292
22	Electrically driven spin resonance in a bent disordered carbon nanotube. Physical Review B, 2014, 90, .	3.2	13
23	A valley–spin qubit in a carbon nanotube. Nature Nanotechnology, 2013, 8, 565-568.	31.5	119
24	Large spin-orbit coupling in carbon nanotubes. Nature Communications, 2013, 4, 1573.	12.8	109
25	A High Quality Factor Carbon Nanotube Mechanical Resonator at 39 GHz. Nano Letters, 2012, 12, 193-197.	9.1	101
26	Valley–spin blockade and spin resonance in carbon nanotubes. Nature Nanotechnology, 2012, 7, 630-634.	31.5	103
27	Charge-State Conditional Operation of a Spin Qubit. Physical Review Letters, 2011, 107, 030506.	7.8	79
28	Coherent spin manipulation in an exchange-only qubit. Physical Review B, 2010, 82, .	3.2	203
29	A new mechanism of electric dipole spin resonance: hyperfine coupling in quantum dots. Semiconductor Science and Technology, 2009, 24, 064004.	2.0	34
30	Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot. Physical Review Letters, 2008, 101, 236803.	7.8	95
31	Hyperfine-Mediated Gate-Driven Electron Spin Resonance. Physical Review Letters, 2007, 99, 246601.	7.8	173
32	Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot. Physical Review Letters, 2006, 97, 056801.	7.8	68
33	Preparing, manipulating, and measuring quantum states on a chip. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 35, 251-256.	2.7	5
34	Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 2005, 309, 2180-2184.	12.6	2,674
35	First results from MAST. Nuclear Fusion, 2001, 41, 1423-1433.	3.5	130