
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight from the synergistic effect of dopant and defect interplay in carbons for high-performance capacitive deionization. Separation and Purification Technology, 2022, 281, 119807.	3.9	14
2	Polymorphism and cocrystal salt formation of 2-((2,6-dichlorophenyl)amino)benzoic acid, harvest of a second form of 2-((2,6-dimethylphenyl)amino)benzoic acid, and isomorphism between the two systems. CrystEngComm, 2022, 24, 681-690.	1.3	5
3	Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Science China Chemistry, 2022, 65, 1362-1373.	4.2	79
4	Differentiation of Ptâ^'Fe and Ptâ^'Ni ₃ Surface Catalytic Mechanisms towards Contrasting Products in Chemoselective Hydrogenation of α,βâ€Unsaturated Aldehydes. ChemCatChem, 2021, 13, 704-711.	1.8	14
5	Highly efficient atomically dispersed Co–N active sites in porous carbon for high-performance capacitive desalination of brackish water. Journal of Materials Chemistry A, 2021, 9, 3066-3076.	5.2	33
6	A new solvate of clonixin and a comparison of the two clonixin solvates. RSC Advances, 2021, 11, 24836-24842.	1.7	3
7	Sustainable development of ultrathin porous carbon nanosheets with highly accessible defects from biomass waste for high-performance capacitive desalination. Green Chemistry, 2021, 23, 8554-8565.	4.6	25
8	Distinct pathways of solid-to-solid phase transitions induced by defects: the case of <scp>DL</scp> -methionine. IUCrJ, 2021, 8, 584-594.	1.0	13
9	Understanding Nucleation Mechanism of Mefenamic Acid: An Examination of Relation between Pre-assembly Structure in Solution and Nucleation Kinetics. Crystal Growth and Design, 2021, 21, 6473-6484.	1.4	4
10	Synthon Polymorphism and ï€â€"ï€ Stacking in <i>N</i> -Phenyl-2-hydroxynicotinanilides. Crystal Growth and Design, 2021, 21, 6155-6165.	1.4	9
11	A high-performance energy storage system from sphagnum uptake waste LIBs with negative greenhouse-gas emission. Nano Energy, 2020, 67, 104216.	8.2	10
12	An investigation of the polymorphism of a potent nonsteroidal anti-inflammatory drug flunixin. CrystEngComm, 2020, 22, 448-457.	1.3	6
13	Steric Effect Determines the Formation of Lactam–Lactam Dimers or Amide Câ•O···NH (Lactam) Chain Motifs in <i>N</i> -Phenyl-2-hydroxynicotinanilides. Crystal Growth and Design, 2020, 20, 4346-4357.	1.4	5
14	A Benziodoxole-Based Hypervalent Iodine(III) Compound Functioning as a Peptide Coupling Reagent. Frontiers in Chemistry, 2020, 8, 183.	1.8	5
15	Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism. Chemical Society Reviews, 2020, 49, 2828-2842.	18.7	326
16	An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. Journal of Materials Chemistry C, 2020, 8, 6293-6298.	2.7	12
17	Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors. Chemistry of Materials, 2020, 32, 2593-2604.	3.2	91
18	A mixed hole transport material employing a highly planar conjugated molecule for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5163-5170.	5.2	40

#	Article	IF	CITATIONS
19	Reply to the â€~Comment on "Polymorphism of levofloxacin: structure, properties and phase transformationâ€â€™ by Tejender S. Thakur, <i>CrystEngComm</i> , 2020, 22 , DOI: 10.1039/C9CE01400D. CrystEngComm, 2020, 22, 1889-1891.	1.3	1
20	Rare Earth Oxide Anchored Platinum Catalytic Site Coated Zeolitic Imidazolate Frameworks toward Enhancing Selective Hydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 7198-7205.	4.0	16
21	A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy, 2020, 70, 104498.	8.2	144
22	Nucleation Control-Triggering Cocrystal Polymorphism of Charge-Transfer Complexes Differing in Physical and Electronic Properties. ACS Applied Materials & Interfaces, 2020, 12, 19718-19726.	4.0	21
23	Eutectics and Salt of Dapsone With Hydroxybenzoic Acids: Binary Phase Diagrams, Characterization and Evaluation. Journal of Pharmaceutical Sciences, 2020, 109, 2224-2236.	1.6	12
24	A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy, 2019, 63, 103887.	8.2	82
25	Locality and strength of intermolecular interactions in organic crystals: using conceptual density functional theory (CDFT) to characterize a highly polymorphic system. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	3
26	Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. Journal of Materials Chemistry A, 2019, 7, 3375-3383.	5.2	49
27	Agent-assisted VSSe ternary alloy single crystals as an efficient stable electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15714-15721.	5.2	26
28	Achieving Both Enhanced Voltage and Current through Fine‶uning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.	10.2	73
29	Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 2019, 31, e1807628.	11.1	64
30	Effect of Substituent Size and Isomerization on the Polymorphism of 2-(Naphthalenylamino)-benzoic Acids. Crystal Growth and Design, 2019, 19, 3694-3703.	1.4	6
31	Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Applied Surface Science, 2019, 479, 1141-1147.	3.1	32
32	Supramolecular Design of Donor–Acceptor Complexes via Heteroatom Replacement toward Structure and Electrical Transporting Property Tailoring. ACS Applied Materials & Interfaces, 2019, 11, 1109-1116.	4.0	19
33	A Direct Method to Access Substituted Pyreno[4,5â€c:9,10â€c′] difuran and its Analogues. Asian Journal of Organic Chemistry, 2018, 7, 2213-2217.	1.3	6
34	Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 9-16.	0.4	5
35	Zwitterion formation and subsequent carboxylate–pyridinium NH synthon generation through isomerization of 2-anilinonicotinic acid. CrystEngComm, 2018, 20, 6126-6132.	1.3	1
36	Substituent Electronegativity and Isostructurality in the Polymorphism of Clonixin Analogues. Crystal Growth and Design, 2018, 18, 7006-7014.	1.4	8

#	Article	IF	CITATIONS
37	Solution growth and thermal treatment of crystals lead to two new forms of 2-((2,6-dimethylphenyl)amino)benzoic acid. RSC Advances, 2018, 8, 15459-15470.	1.7	10
38	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	15.6	371
39	Pyreneâ€Containing Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie - International Edition, 2018, 57, 13555-13559.	7.2	76
40	Pyrene ontaining Twistarene: Twelve Benzene Rings Fused in a Row. Angewandte Chemie, 2018, 130, 13743-13747.	1.6	27
41	Structural Isomerization of 2-Anilinonicotinic Acid Leads to a New Synthon in 6-Anilinonicotinic Acids. Crystal Growth and Design, 2018, 18, 4849-4859.	1.4	3
42	Molecular Origin of Donor- and Acceptor-Rich Domain Formation in Bulk-Heterojunction Solar Cells with an Enhanced Charge Transport Efficiency. Journal of Physical Chemistry C, 2017, 121, 5864-5870.	1.5	18
43	Strong Hydrogen Bond Leads to a Fifth Crystalline Form and Polymorphism of Clonixin. ChemistrySelect, 2017, 2, 4942-4950.	0.7	15
44	Persistent Self-Association of Solute Molecules in Solution. Journal of Physical Chemistry B, 2017, 121, 10118-10124.	1.2	38
45	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	3.2	139
46	Higher-Order Self-Assembly of Benzoic Acid in Solution. Crystal Growth and Design, 2017, 17, 5049-5053.	1.4	27
47	^{sp2} CHâ< Cl hydrogen bond in the conformational polymorphism of 4-chloro-phenylanthranilic acid. CrystEngComm, 2017, 19, 4345-4354.	1.3	18
48	Tautomeric Polymorphism of 4-Hydroxynicotinic Acid. Crystal Growth and Design, 2016, 16, 2573-2580.	1.4	23
49	Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions. Molecular Pharmaceutics, 2016, 13, 3964-3975.	2.3	69
50	Oligothiophene-based small molecules with 3,3′-difluoro-2,2′-bithiophene central unit for solution-processed organic solar cells. Organic Electronics, 2016, 38, 172-179.	1.4	8
51	"Doping―pentacene with sp ² -phosphorus atoms: towards high performance ambipolar semiconductors. Physical Chemistry Chemical Physics, 2016, 18, 3173-3178.	1.3	15
52	What are the practical limits for the specific surface area and capacitance of bulk sp2 carbon materials?. Science China Chemistry, 2016, 59, 225-230.	4.2	17
53	Investigating the Interaction Pattern and Structural Elements of a Drug–Polymer Complex at the Molecular Level. Molecular Pharmaceutics, 2015, 12, 2459-2468.	2.3	54
54	Density functional investigations on the catalytic cycle of the hydrogenation of aldehydes catalyzed by an enhanced ruthenium complex: an alcohol-bridged autocatalytic process. RSC Advances, 2015, 5, 2827-2836.	1.7	1

#	Article	IF	CITATIONS
55	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	6.6	788
56	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i>]thiophene-Substituted Benzo[1,2- <i>b</i> :4,5-bâ€2]dithiophene for Solution-Processed Solar Cells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	3.2	71
57	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	15.6	769
58	Using computational methods to explore improvements to Knölker's iron catalyst. Organic and Biomolecular Chemistry, 2014, 12, 4361-4371.	1.5	19
59	The effect of substituents on the hydrogenation of an aldehyde catalyzed by Kn¶lker's catalyst. Journal of Organometallic Chemistry, 2014, 749, 69-74.	0.8	10
60	Impact of fluorinated end groups on the properties of acceptor–donor–acceptor type oligothiophenes for solution-processed photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 1337-1345.	2.7	19
61	Impact of the Electronâ€Transport Layer on the Performance of Solutionâ€Processed Smallâ€Molecule Organic Solar Cells. ChemSusChem, 2014, 7, 2358-2364.	3.6	40
62	High Chemoselectivity of an Advanced Iron Catalyst for the Hydrogenation of Aldehydes with Isolated Câ•€ Bond: A Computational Study. Journal of Organic Chemistry, 2014, 79, 9355-9364.	1.7	14
63	Intermolecular interactions in organic crystals: gaining insight from electronic structure analysis by density functional theory. CrystEngComm, 2014, 16, 7162-7171.	1.3	10
64	Theoretical exploration of stereochemical nonrigidity for R f Co(PF3) x (CO)4â^'x (R f =CF3, C2F5, C3F7,) Tj ETQq	0 0 0 rgB1 1.3	Qverlock 1
65	The mechanism for the hydrogenation of ketones catalyzed by Knölker's iron-catalyst. Organic and Biomolecular Chemistry, 2013, 11, 5264.	1.5	46
66	Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of Ï€-stacking moieties as end group. Journal of Materials Chemistry A, 2013, 1, 1801-1809.	5.2	96
67	Controlling the Effective Surface Area and Pore Size Distribution of sp ² Carbon Materials and Their Impact on the Capacitance Performance of These Materials. Journal of the American Chemical Society, 2013, 135, 5921-5929.	6.6	291
68	Investigation of Quinquethiophene Derivatives with Different End Groups for High Open Circuit Voltage Solar Cells. Advanced Energy Materials, 2013, 3, 639-646.	10.2	65
69	Preparation and electrochemistry properties of trifunctional 1,9-dithiophenalenylium salt and its neutral radical with benzene spacer. Tetrahedron, 2013, 69, 6890-6896.	1.0	5
70	Bromination of Isothianaphthene Derivatives towards the Application in Organic Electronics. Chinese Journal of Chemistry, 2013, 31, 1391-1396.	2.6	5
71	Impact of dye end groups on acceptor–donor–acceptor type molecules for solution-processed photovoltaic cells. Journal of Materials Chemistry, 2012, 22, 9173.	6.7	69
72	Isothianaphtheneâ€Based Conjugated Polymers for Organic Photovoltaic Cells. Macromolecular Chemistry and Physics, 2012, 213, 1596-1603.	1.1	7

#	Article	IF	CITATIONS
73	Solution Processable Rhodanineâ€Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1%. Advanced Energy Materials, 2012, 2, 74-77.	10.2	303
74	Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study. Physical Chemistry Chemical Physics, 2010, 12, 4667.	1.3	21