
Tao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metabolic Engineering, 2015, 31, 13-21.	3.6	351
2	Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnology Advances, 2021, 53, 107682.	6.0	130
3	Genome shuffling: Progress and applications for phenotype improvement. Biotechnology Advances, 2009, 27, 996-1005.	6.0	122
4	Transcriptome analysis guided metabolic engineering of Bacillus subtilis for riboflavin production. Metabolic Engineering, 2009, 11, 243-252.	3.6	95
5	A three-species microbial consortium for power generation. Energy and Environmental Science, 2017, 10, 1600-1609.	15.6	90
6	Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresource Technology, 2011, 102, 3934-3940.	4.8	80
7	Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for Biofuels, 2016, 9, 90.	6.2	80
8	Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 2020, 19, 31.	1.9	75
9	Metabolic engineering of thermophilic <i>Bacillus licheniformis</i> for chiral pure Dâ€2,3â€butanediol production. Biotechnology and Bioengineering, 2012, 109, 1610-1621.	1.7	70
10	Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories, 2014, 13, 104.	1.9	70
11	Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Applied Microbiology and Biotechnology, 2007, 76, 783-794.	1.7	67
12	Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2018, 7, 1785-1797.	1.9	67
13	Hierarchical Cobalt Borate/MXenes Hybrid with Extraordinary Electrocatalytic Performance in Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 3758-3765.	3.6	66
14	NADH plays the vital role for chiral pure Dâ€(â^')â€2,3â€butanediol production in <i>Bacillus subtilis</i> under limited oxygen conditions. Biotechnology and Bioengineering, 2014, 111, 2126-2131.	1.7	63
15	Metabolic engineering of <i>Corynebacterium glutamicum</i> for efficient production of 5â€aminolevulinic acid. Biotechnology and Bioengineering, 2016, 113, 1284-1293.	1.7	63
16	Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microbial Cell Factories, 2012, 11, 37.	1.9	56
17	Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Applied Microbiology and Biotechnology, 2006, 70, 151-161.	1.7	55
18	Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis. Biotechnology for Biofuels, 2019, 12, 197.	6.2	55

#	Article	IF	CITATIONS
19	Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Applied Microbiology and Biotechnology, 2010, 85, 1907-1914.	1.7	53
20	Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters, 2012, 34, 1877-1885.	1.1	51
21	A synthetic microbial consortium of <i>Shewanella</i> and <i>Bacillus</i> for enhanced generation of bioelectricity. Biotechnology and Bioengineering, 2017, 114, 526-532.	1.7	50
22	Engineering Escherichia coli for fumaric acid production from glycerol. Bioresource Technology, 2014, 174, 81-87.	4.8	48
23	Combinatorial optimization of CO ₂ transport and fixation to improve succinate production by promoter engineering. Biotechnology and Bioengineering, 2016, 113, 1531-1541.	1.7	48
24	Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate. Biotechnology for Biofuels, 2018, 11, 95.	6.2	45
25	Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metabolic Engineering, 2018, 48, 138-149.	3.6	45
26	Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. Journal of Biotechnology, 2013, 168, 499-505.	1.9	44
27	High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microbial Cell Factories, 2016, 15, 141.	1.9	43
28	The room temperature electron reduction for the preparation of silver nanoparticles on cotton with high antimicrobial activity. Carbohydrate Polymers, 2017, 161, 270-276.	5.1	43
29	In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Molecular BioSystems, 2013, 9, 2034.	2.9	42
30	Increased production of riboflavin by metabolic engineering of the purine pathway in Bacillus subtilis. Biochemical Engineering Journal, 2009, 46, 28-33.	1.8	41
31	Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microbial Cell Factories, 2015, 14, 185.	1.9	40
32	Engineering of Acetate Recycling and Citrate Synthase to Improve Aerobic Succinate Production in Corynebacterium glutamicum. PLoS ONE, 2013, 8, e60659.	1,1	39
33	Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis. Microbial Cell Factories, 2014, 13, 101.	1.9	39
34	Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnology Letters, 2014, 36, 553-560.	1.1	39
35	Expression of Galactose Permease and Pyruvate Carboxylase in Escherichia coli ptsG Mutant Increases the Growth Rate and Succinate Yield under Anaerobic Conditions. Biotechnology Letters, 2006, 28, 89-93.	1.1	38
36	Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling. Applied Microbiology and Biotechnology, 2010, 85, 1541-1549.	1.7	38

#	Article	IF	CITATIONS
37	Establishment of a Markerless Mutation Delivery System in Bacillus subtilis Stimulated by a Double-Strand Break in the Chromosome. PLoS ONE, 2013, 8, e81370.	1.1	37
38	Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis. Biotechnology Letters, 2006, 28, 1667-1672.	1.1	36
39	Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microbial Cell Factories, 2014, 13, 172.	1.9	36
40	Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microbial Cell Factories, 2016, 15, 94.	1.9	36
41	Systematic metabolic engineering of <i>Corynebacterium glutamicum</i> for the industrial-level production of optically pure <scp>d</scp> -(â~)-acetoin. Green Chemistry, 2017, 19, 5691-5702.	4.6	36
42	Development of Novel Bioreactor Control Systems Based on Smart Sensors and Actuators. Frontiers in Bioengineering and Biotechnology, 2020, 8, 7.	2.0	36
43	Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system. Applied Microbiology and Biotechnology, 2014, 98, 1991-2002.	1.7	35
44	Development of a markerless gene replacement system in Corynebacterium glutamicum using upp as a counter-selection marker. Biotechnology Letters, 2015, 37, 609-617.	1.1	35
45	Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. Journal of Biotechnology, 2016, 226, 8-13.	1.9	34
46	Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresource Technology, 2014, 151, 411-414.	4.8	32
47	Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1461-1475.	1.4	30
48	Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Microbiological Research, 2014, 169, 432-440.	2.5	29
49	Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing. Applied Microbiology and Biotechnology, 2015, 99, 885-896.	1.7	29
50	Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. PLoS ONE, 2016, 11, e0159298.	1.1	29
51	Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2018, 34, 153.	1.7	29
52	Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PLoS ONE, 2017, 12, e0169437.	1.1	29
53	Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Frontiers in Bioengineering and Biotechnology, 2020, 8, 585.	2.0	28
54	Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis. Applied Microbiology and Biotechnology, 2006, 73, 374-383.	1.7	27

#	Article	IF	CITATIONS
55	Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli. Metabolic Engineering, 2013, 20, 9-19.	3.6	27
56	Metabolism of l-methionine linked to the biosynthesis of volatile organic sulfur-containing compounds during the submerged fermentation of Tuber melanosporum. Applied Microbiology and Biotechnology, 2013, 97, 9981-9992.	1.7	27
57	Aroma improvement by repeated freeze-thaw treatment during Tuber melanosporum fermentation. Scientific Reports, 2015, 5, 17120.	1.6	27
58	Synthesis, Characterization, Adsorption, and Isotopic Separation Studies of Pyrocatechol-Modified MCM-41 for Efficient Boron Removal. Industrial & Engineering Chemistry Research, 2019, 58, 3282-3292.	1.8	27
59	Advances in biotechnological production of β-alanine. World Journal of Microbiology and Biotechnology, 2021, 37, 79.	1.7	27
60	Enhancement of riboflavin production by overexpression of acetolactate synthase in aptamutant ofBacillus subtilis. FEMS Microbiology Letters, 2007, 266, 224-230.	0.7	26
61	Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 841443.	2.0	26
62	Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World Journal of Microbiology and Biotechnology, 2014, 30, 1893-1900.	1.7	25
63	Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum. Biotechnology Letters, 2018, 40, 819-827.	1.1	24
64	Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli. Scientific Reports, 2015, 5, 17321.	1.6	23
65	Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis. Frontiers in Microbiology, 2017, 8, 638.	1.5	22
66	Engineering central pathways for industrial-level (3R)-acetoin biosynthesis in Corynebacterium glutamicum. Microbial Cell Factories, 2020, 19, 102.	1.9	21
67	Cell Catalysis of Citrate to Itaconate by Engineered <i>Halomonas bluephagenesis</i> . ACS Synthetic Biology, 2021, 10, 3017-3027.	1.9	20
68	Multiplex Iterative Plasmid Engineering for Combinatorial Optimization of Metabolic Pathways and Diversification of Protein Coding Sequences. ACS Synthetic Biology, 2013, 2, 651-661.	1.9	19
69	Significance of metal ion supplementation in the fermentation medium on the structure and anti-tumor activity of Tuber polysaccharides produced by submerged culture of Tuber melanosporum. Process Biochemistry, 2014, 49, 2030-2038.	1.8	19
70	Engineering genome-reduced Bacillus subtilis for acetoin production from xylose. Biotechnology Letters, 2018, 40, 393-398.	1.1	19
71	Metabolic engineering of <i>Escherichia coli</i> for production of chemicals derived from the shikimate pathway. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 525-535.	1.4	19
72	Transition Metal/Metal Oxide Interface (Ni–Mo–O/Ni ₄ Mo) Stabilized on N-Doped Carbon Paper for Enhanced Hydrogen Evolution Reaction in Alkaline Conditions. Industrial & Engineering Chemistry Research, 2021, 60, 5145-5150.	1.8	19

#	Article	IF	CITATIONS
73	Metabolic engineering of. Microbial Cell Factories, 2014, 13, 104.	1.9	19
74	Advances in biological production of acetoin: a comprehensive overview. Critical Reviews in Biotechnology, 2022, 42, 1135-1156.	5.1	18
75	Design and synthesis of the novel DNA topoisomerase II inhibitors: Esterification and amination substituted 4′-demethylepipodophyllotoxin derivates exhibiting anti-tumor activity by activating ATM/ATR signaling pathways. European Journal of Medicinal Chemistry, 2014, 80, 267-277.	2.6	17
76	Tubulin structure-based drug design for the development of novel 4β-sulfur-substituted podophyllum tubulin inhibitors with anti-tumor activity. Scientific Reports, 2015, 5, 10172.	1.6	17
77	Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli. Biotechnology Letters, 2016, 38, 1307-1314.	1.1	17
78	An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnology Letters, 2016, 38, 1359-1365.	1.1	17
79	Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synthetic and Systems Biotechnology, 2020, 5, 200-205.	1.8	17
80	Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: 4β-S-aromatic heterocyclic podophyllum derivatives display antitumor activity. Scientific Reports, 2015, 5, 14814.	1.6	16
81	Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnology Letters, 2017, 39, 1369-1374.	1.1	16
82	Enhanced Electromechanical Properties of Threeâ€Phased Polydimethylsiloxane Nanocomposites via Surface Encapsulation of Barium Titanate and Multiwalled Carbon Nanotube with Polydopamine. Macromolecular Materials and Engineering, 2021, 306, 2100046.	1.7	16
83	In vitro biosynthesis of optically pure d―(â^')―acetoin from meso â€2,3â€butanediol using 2,3â€butanediol dehydrogenase and NADH oxidase. Journal of Chemical Technology and Biotechnology, 2019, 94, 2547-2554.	1.6	15
84	Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 899-909.	1.4	15
85	Recent progress in metabolic engineering of microbial formate assimilation. Applied Microbiology and Biotechnology, 2020, 104, 6905-6917.	1.7	15
86	Engineering Corynebacterium glutamicum for the Efficient Production of 3-Hydroxypropionic Acid from a Mixture of Glucose and Acetate via the Malonyl-CoA Pathway. Catalysts, 2020, 10, 203.	1.6	15
87	Combinatorial expression of different β-carotene hydroxylases and ketolases in <i>Escherichia coli</i> for increased astaxanthin production. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1505-1516.	1.4	14
88	Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chinese Journal of Chemical Engineering, 2015, 23, 1834-1839.	1.7	13
89	Concomitant cellâ€free biosynthesis of optically pure <scp>D</scp> â€(â^)â€acetoin and xylitol via a novel <scp>NAD</scp> ⁺ regeneration in twoâ€enzyme cascade. Journal of Chemical Technology and Biotechnology, 2018, 93, 3444-3451.	1.6	13
90	Mechanistic study on boron adsorption and isotopic separation with magnetic magnetite nanoparticles. Journal of Materials Science, 2021, 56, 4624-4640.	1.7	13

#	Article	IF	CITATIONS
91	Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synthetic Biology, 2021, 10, 1574-1586.	1.9	13
92	Enhanced 3-Hydroxypropionic Acid Production From Acetate via the Malonyl-CoA Pathway in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 808258.	2.0	13
93	Improving Furfural Tolerance of <i>Escherichia coli</i> by Integrating Adaptive Laboratory Evolution with CRISPR-Enabled Trackable Genome Engineering (CREATE). ACS Sustainable Chemistry and Engineering, 2022, 10, 2318-2330.	3.2	13
94	Fluoride-containing podophyllum derivatives exhibit antitumor activities through enhancing mitochondrial apoptosis pathway by increasing the expression of caspase-9 in HeLa cells. Scientific Reports, 2015, 5, 17175.	1.6	12
95	Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering. Journal of Biotechnology, 2016, 231, 115-121.	1.9	12
96	glyA gene knock-out in Escherichia coli enhances L-serine production without glycine addition. Biotechnology and Bioprocess Engineering, 2017, 22, 390-396.	1.4	12
97	A rational design strategy of the novel topoisomerase II inhibitors for the synthesis of the 4-O-(2-pyrazinecarboxylic)-4′-demethylepipodophyllotoxin with antitumor activity by diminishing the relaxation reaction of topoisomerase II-DNA decatenation. Bioorganic and Medicinal Chemistry, 2014, 22. 2998-3007.	1.4	11
98	Metabolic engineering of an <i>E. coli ndh</i> knockout strain for <scp>PHB</scp> production from mixed glucose–xylose feedstock. Journal of Chemical Technology and Biotechnology, 2017, 92, 2739-2745.	1.6	11
99	One-pot efficient biosynthesis of (3 <i>R</i>)-acetoin from pyruvate by a two-enzyme cascade. Catalysis Science and Technology, 2020, 10, 7734-7744.	2.1	11
100	Efficient solid-state fermentation for the production of 5-aminolevulinic acid enriched feed using recombinant Saccharomyces cerevisiae. Journal of Biotechnology, 2020, 322, 29-32.	1.9	11
101	Substrate profiling and tolerance testing of Halomonas TD01 suggest its potential application in sustainable manufacturing of chemicals. Journal of Biotechnology, 2020, 316, 1-5.	1.9	11
102	Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. Journal of Biotechnology, 2014, 192, 170-176.	1.9	10
103	Purification and functional characterization of thermostable 5-aminolevulinic acid synthases. Biotechnology Letters, 2015, 37, 2247-2253.	1.1	10
104	Modular Engineering of the Flavin Pathway in <i>Escherichia coli</i> for Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide Production. Journal of Agricultural and Food Chemistry, 2019, 67, 6532-6540.	2.4	10
105	Evolutionary engineering of Escherichia coli for improved anaerobic growth in minimal medium accelerated lactate production. Applied Microbiology and Biotechnology, 2019, 103, 2155-2170.	1.7	10
106	Deregulation of purine pathway in. Microbial Cell Factories, 2014, 13, 101.	1.9	10
107	Enhanced Riboflavin Production by Expressing Heterologous Riboflavin Operon from B. cereus ATCC14579 in Bacillus subtilis. Chinese Journal of Chemical Engineering, 2010, 18, 129-136.	1.7	9
108	Artificial consortium that produces riboflavin regulates distribution of acetoin and 2,3â€butanediol by <i>Paenibacillus polymyxa</i> CJX518. Engineering in Life Sciences, 2017, 17, 1039-1049.	2.0	8

#	Article	IF	CITATIONS
109	Sulfur-Rich Molybdenum Sulfide Grown on Porous N-Doped Graphene for Efficient Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2020, 59, 12862-12869.	1.8	8
110	Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. MSystems, 2020, 5, .	1.7	8
111	Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microbial Cell Factories, 2022, 21, 56.	1.9	8
112	Highly efficient hemicellulose utilization for acetoin production by an engineered <i>Bacillus subtilis</i> . Journal of Chemical Technology and Biotechnology, 2018, 93, 3428-3435.	1.6	7
113	Ranking the significance of fermentation conditions on the volatile organic compounds of Tuber melanosporum fermentation system by combination of head-space solid phase microextraction and chromatographic fingerprint similarity analysis. Bioprocess and Biosystems Engineering, 2014, 37, 543-552.	1.7	6
114	Rational Engineering of <i>Escherichia coli</i> for High-Level Production of Riboflavin. Journal of Agricultural and Food Chemistry, 2021, 69, 12241-12249.	2.4	6
115	<scp>Interfacial</scp> engineering of polydimethylsiloxane based dielectric elastomers with excellent electromechanical properties via incorporating polyphenol encapsulated multiwalled carbon nanotube. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
116	Adaptive Laboratory Evolution of Halomonas bluephagenesis Enhances Acetate Tolerance and Utilization to Produce Poly(3-hydroxybutyrate). Molecules, 2022, 27, 3022.	1.7	6
117	Comparative Transcriptome Analysis for Metabolic Engineering. Methods in Molecular Biology, 2013, 985, 447-458.	0.4	5
118	Improving diacetyl production in Corynebacterium glutamicum via modifying respiratory chain. Journal of Biotechnology, 2021, 332, 20-28.	1.9	5
119	Engineering microorganisms based on molecular evolutionary analysis: a succinate production case study. Evolutionary Applications, 2014, 7, 913-920.	1.5	4
120	Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB Express, 2018, 8, 106.	1.4	4
121	A comparative analysis of China and other countries in metabolic engineering: Output, impact and collaboration. Chinese Journal of Chemical Engineering, 2021, 30, 37-45.	1.7	4
122	Editorial: Engineering Yeast to Produce Plant Natural Products. Frontiers in Bioengineering and Biotechnology, 2021, 9, 798097.	2.0	4
123	Improving riboflavin production by knocking down ribF, purA and guaC genes using synthetic regulatory small RNA. Journal of Biotechnology, 2021, 336, 25-29.	1.9	3
124	Research Progress in Benzosilole-Containing Organic Compounds. Chinese Journal of Organic Chemistry, 2014, 34, 1061.	0.6	3
125	Optimization of Riboflavin Production by Recombinant Bacillus Subtilis X42 Using Statistical Designs. Advanced Materials Research, 2013, 634-638, 1031-1036.	0.3	2
126	Isobaric Vapor–Liquid Equilibrium for Binary and Ternary Systems of 2-Methoxyethanol, Ethylbenzene, and Dimethyl Sulfoxide at 100.00 kPa. Journal of Chemical & Engineering Data, 2018, 63, 3345-3352.	1.0	2

#	Article	IF	CITATIONS
127	Advances in the Extraction, Purification and Detection of the Natural Product 1-Deoxynojirimycin. Critical Reviews in Analytical Chemistry, 2021, 51, 246-257.	1.8	2
128	Biochemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 929-993.	2.3	1
129	A comprehensive economic optimization methodology of divided wall columns for biopolyol separation. Royal Society Open Science, 2020, 7, 191748.	1.1	1
130	An international comprehensive benchmarking analysis of synthetic biology in China from 2015 to 2020. Chinese Journal of Chemical Engineering, 2022, 48, 211-226.	1.7	1
131	Expression of Vitreoscilla hemoglobin enhances growth and production of riboflavin in recombinant Bacillus subtilis. Journal of Biotechnology, 2008, 136, S35.	1.9	0
132	Enhancing riboflavin production by genetic modification of purine pathway in Bacillus subtilis. Journal of Biotechnology, 2008, 136, S35-S36.	1.9	0
133	Treatment of Nisin Fermentation Wastewater by Fenton Oxidation Process. , 2009, , .		0
134	Study of a <i>upp</i> -Based Counterselective Method for Large-Scale Deletion of Genome Fragments in <i>Bacillus subtilis</i> . Advanced Materials Research, 0, 634-638, 1076-1080.	0.3	0
135	Expressing Xylanases in Escherichia Coli by Cell Surface Display. Advanced Materials Research, 2013, 634-638, 965-969.	0.3	0
136	Multiplex Plasmid Engineering (MPE) for Fine Tuning the Expression Level of Red Fluorescent Protein. Lecture Notes in Electrical Engineering, 2014, , 1837-1844.	0.3	0