Li-Rong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197298/publications.pdf

Version: 2024-02-01

892 papers 58,823 citations

119 h-index 213 g-index

914 all docs 914 docs citations

914 times ranked 39456 citing authors

#	Article	IF	CITATIONS
1	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
2	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	7.2	1,836
3	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	7.2	1,542
4	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	16.1	958
5	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	11.1	751
6	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	15.6	741
7	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	5. 8	696
8	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	11.1	691
9	A Singleâ€Atom Nanozyme for Wound Disinfection Applications. Angewandte Chemie - International Edition, 2019, 58, 4911-4916.	7.2	607
10	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	6.6	556
11	A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Transactions on Industrial Informatics, 2014, 10, 2180-2191.	7.2	548
12	Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. Journal of the American Chemical Society, 2018, 140, 9942-9951.	6.6	548
13	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	5.8	537
14	Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ perovskite solar cells. Science, 2020, 370, .	6.0	530
15	Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation. Advanced Materials, 2017, 29, 1703828.	11.1	524
16	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	11.1	511
17	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	6.6	501
18	Active Site Dependent Reaction Mechanism over Ru/CeO ₂ Catalyst toward CO ₂ Methanation. Journal of the American Chemical Society, 2016, 138, 6298-6305.	6.6	489

#	Article	IF	CITATIONS
19	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	5.5	483
20	Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Advanced Functional Materials, 2019, 29, 1901236.	7.8	469
21	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	7.2	455
22	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	6.6	452
23	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	7.2	431
24	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 2705-2709.	7.2	404
25	Cobalt Covalent Doping in MoS ₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 2018, 30, e1801450.	11.1	402
26	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
27	Introduction of amino groups into acid-resistant MOFs for enhanced U(<scp>vi</scp>) sorption. Journal of Materials Chemistry A, 2015, 3, 525-534.	5.2	378
28	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2016, 128, 10958-10963.	1.6	373
29	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	10.2	371
30	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371
31	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	5.8	361
32	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	7.2	344
33	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	11.1	341
34	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	15.6	336
35	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 736-740.	7.2	335
36	Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16723-16731.	6.6	333

#	Article	IF	CITATIONS
37	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	5.8	326
38	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	6.6	310
39	Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials, 2015, 5, 1401880.	10.2	307
40	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	1.6	306
41	The Solidâ€Phase Synthesis of an Feâ€N Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	7.2	293
42	Enhanced Photocatalytic Removal of Uranium(VI) from Aqueous Solution by Magnetic TiO ₂ /Fe ₃ O ₄ and Its Graphene Composite. Environmental Science & Environmental Science	4.6	292
43	A general route <i>via</i> formamide condensation to prepare atomically dispersed metalâ€"nitrogenâ€"carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	15.6	290
44	Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nature Communications, 2019, 10, 3851.	5.8	288
45	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	6.6	285
46	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Letters, 2017, 2, 504-511.	8.8	279
47	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	5.5	278
48	Platinum–copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nature Communications, 2019, 10, 5812.	5.8	277
49	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	7.2	275
50	TiO _{2â€"<i>x</i>} -Modified Ni Nanocatalyst with Tunable Metalâ€"Support Interaction for Waterâ€"Gas Shift Reaction. ACS Catalysis, 2017, 7, 7600-7609.	5.5	268
51	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	11.1	266
52	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	7.2	263
53	Pd Singleâ€Atom Catalysts on Nitrogenâ€Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Advanced Materials, 2019, 31, e1900509.	11.1	262
54	Highly Electrocatalytic Ethylene Production from CO ₂ on Nanodefective Cu Nanosheets. Journal of the American Chemical Society, 2020, 142, 13606-13613.	6.6	260

#	Article	IF	CITATIONS
55	Functionalized MoS ₂ Nanovehicle with Nearâ€Infrared Laserâ€Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteriaâ€Infected Wound Therapy. Small, 2018, 14, e1802290.	5.2	259
56	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	6.6	259
57	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	6.6	257
58	A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nature Communications, 2020, 11, 4341.	5.8	257
59	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	5.8	255
60	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Environmenta	4.6	253
61	Black Phosphorus Quantum Dot/Ti ₃ C ₂ MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium″on Storage. Advanced Energy Materials, 2018, 8, 1801514.	10.2	251
62	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	4.5	249
63	Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 2450-2458.	15.6	246
64	Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nature Communications, 2019, 10, 2980.	5.8	235
65	Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. Journal of Hazardous Materials, 2015, 290, 26-33.	6.5	231
66	Value-centric design of the internet-of-things solution for food supply chain: Value creation, sensor portfolio and information fusion. Information Systems Frontiers, 2015, 17, 289-319.	4.1	231
67	Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum?. ACS Energy Letters, 2018, 3, 237-244.	8.8	230
68	Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nature Communications, 2021, 12, 4679.	5.8	226
69	Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain, 2016, 139, 3296-3309.	3.7	224
70	Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. Journal of the American Chemical Society, 2021, 143, 12220-12229.	6.6	219
71	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	6.6	218
72	Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1807771.	11.1	216

#	Article	IF	Citations
73	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	5.8	215
74	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16396-16403.	4.0	214
7 5	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	5.8	210
76	Insights into Interfacial Synergistic Catalysis over Ni@TiO _{2–<i>x</i>} Catalyst toward Water–Gas Shift Reaction. Journal of the American Chemical Society, 2018, 140, 11241-11251.	6.6	208
77	Rational Design of Holey 2D Nonlayered Transition Metal Carbide/Nitride Heterostructure Nanosheets for Highly Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1803768.	10.2	204
78	Low-Cost Printed Chipless RFID Humidity Sensor Tag for Intelligent Packaging. IEEE Sensors Journal, 2015, 15, 3201-3208.	2.4	200
79	Relationship between Iron Carbide Phases (ε-Fe ₂ C, Fe ₇ C ₃ , and) Tj ETQq1 Catalysts. ACS Catalysis, 2018, 8, 3304-3316.	1 0.78431 5.5	.4 rgBT /Ov 200
80	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie - International Edition, 2020, 59, 5108-5115.	7.2	200
81	Rare Earth Single-Atom Catalysts for Nitrogen and Carbon Dioxide Reduction. ACS Nano, 2020, 14, 1093-1101.	7.3	198
82	High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Applied Materials & Interfaces, 2018, 10, 5641-5648.	4.0	194
83	Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteriaâ€infected wound therapy. Bioactive Materials, 2021, 6, 4389-4401.	8.6	194
84	Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things. Enterprise Information Systems, 2015, 9, 86-116.	3.3	193
85	Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nature Communications, 2020, 11, 4789.	5.8	192
86	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	6.6	191
87	Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9, 3250.	5.8	186
88	Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N ₂ Reduction to NH ₃ . Advanced Energy Materials, 2020, 10, 2002199.	10.2	185
89	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	11.1	181
90	Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373, 315-320.	6.0	179

#	Article	IF	CITATIONS
91	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie - International Edition, 2021, 60, 2371-2378.	7.2	176
92	Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution, 2015, 197, 99-107.	3.7	174
93	Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nature Communications, 2017, 8, 14548.	5.8	174
94	Potential-Dependent Phase Transition and Mo-Enriched Surface Reconstruction of \hat{I}^3 -CoOOH in a Heterostructured Co-Mo ₂ C Precatalyst Enable Water Oxidation. ACS Catalysis, 2020, 10, 4411-4419.	5.5	174
95	Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. Science of the Total Environment, 2017, 576, 766-774.	3.9	172
96	Preparation of Feâ€"Nâ€"C catalysts with FeN _x (<i>x</i> = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 26147-26153.	5.2	172
97	Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Letters, 2021, 6, 379-386.	8.8	167
98	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	6.5	166
99	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	7.2	165
100	Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Fewâ€Layer Cuâ€ZnIn ₂ S ₄ . Advanced Functional Materials, 2019, 29, 1807013.	7.8	165
101	Effective Removal of Anionic Re(VII) by Surface-Modified Ti ₂ CT _{<i>x</i>} MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environmental Science & Environmental Scien	4.6	163
102	345 m underwater optical wireless communication with 270 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Optics Express, 2017, 25, 27937.	1.7	162
103	X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light: Science and Applications, 2018, 7, 88.	7.7	159
104	Interfacial Feâ^'Oâ^'Niâ^'Oâ^'Fe Bonding Regulates the Active Ni Sites of Niâ€MOFs via Iron Doping and Decorating with FeOOH for Superâ€Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	159
105	Iron atom–cluster interactions increase activity and improve durability in Fe–N–C fuel cells. Nature Communications, 2022, 13, .	5.8	159
106	Singleâ€Atom Fe Catalysts for Fentonâ€Like Reactions: Roles of Different N Species. Advanced Materials, 2022, 34, e2110653.	11.1	158
107	High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Optics Express, 2017, 25, 1193.	1.7	153
108	Au ^{δâ^'} â€"O _v â€"Ti ³⁺ Interfacial Site: Catalytic Active Center toward Low-Temperature Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 2707-2717.	5.5	153

#	Article	lF	Citations
109	Materials capability and device performance in flexible electronics for the Internet of Things. Journal of Materials Chemistry C, 2014, 2, 1220-1232.	2.7	150
110	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie - International Edition, 2020, 59, 16459-16464.	7.2	148
111	MIL-125-NH ₂ @TiO ₂ Core–Shell Particles Produced by a Post-Solvothermal Route for High-Performance Photocatalytic H ₂ Production. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 16418-16423.	4.0	143
112	Leadâ€Free Cs ₂ BiAgBr ₆ Double Perovskiteâ€Based Humidity Sensor with Superfast Recovery Time. Advanced Functional Materials, 2019, 29, 1902234.	7.8	143
113	CoO Hollow Cube/Reduced Graphene Oxide Composites with Enhanced Lithium Storage Capability. Chemistry of Materials, 2014, 26, 5958-5964.	3.2	135
114	Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO ₂ Methanation. Nano Letters, 2021, 21, 7325-7331.	4.5	133
115	Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nature Communications, 2022, 13, 147.	5.8	133
116	A Bioinspired Fiveâ€Coordinated Singleâ€Atom Iron Nanozyme for Tumor Catalytic Therapy. Advanced Materials, 2022, 34, e2107088.	11.1	133
117	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	16.1	132
118	Study of the Active Sites in Porous Nickel Oxide Nanosheets by Manganese Modulation for Enhanced Oxygen Evolution Catalysis. ACS Energy Letters, 2018, 3, 2150-2158.	8.8	131
119	Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nature Communications, 2019, 10, 5790.	5 . 8	128
120	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	15.6	128
121	Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technology, 2007, 98, 1115-1119.	4.8	127
122	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	5.5	121
123	Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries. Nano Letters, 2021, 21, 2255-2264.	4.5	120
124	Atomically Dispersed Pt–N ₃ C ₁ Sites Enabling Efficient and Selective Electrocatalytic C–C Bond Cleavage in Lignin Models under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9429-9439.	6.6	120
125	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	5.8	119
126	Magneticâ€Fieldâ€Stimulated Efficient Photocatalytic N ₂ Fixation over Defective BaTiO ₃ Perovskites. Angewandte Chemie - International Edition, 2021, 60, 11910-11918.	7.2	119

#	Article	IF	CITATIONS
127	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	5.8	118
128	Interfacial Structure-Determined Reaction Pathway and Selectivity for 5-(Hydroxymethyl)furfural Hydrogenation over Cu-Based Catalysts. ACS Catalysis, 2020, 10, 1353-1365.	5 . 5	118
129	Activating Layered Double Hydroxide with Multivacancies by Memory Effect for Energy-Efficient Hydrogen Production at Neutral pH. ACS Energy Letters, 2019, 4, 1412-1418.	8.8	115
130	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Electrochemical Sorption. ACS Applied Materials & Electrochemical Sorption. 15579-15587.	4.0	115
131	In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nature Communications, 2021, 12, 6118.	5.8	115
132	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	11.1	114
133	Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co–MoS2. Nano-Micro Letters, 2019, 11, 102.	14.4	114
134	New Insights into the Roles of Mg in Improving the Rate Capability and Cycling Stability of O3-NaMn _{0.48} Ni _{0.2} Fe _{0.3} Mg _{0.02} O ₂ for Sodium-Ion Batteries. ACS Applied Materials & Sodium-Ion Batteries. ACS	4.0	113
135	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€Site Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	7.8	112
136	A three-dimensional hierarchically porous Mo ₂ C architecture: salt-template synthesis of a robust electrocatalyst and anode material towards the hydrogen evolution reaction and lithium storage. Journal of Materials Chemistry A, 2017, 5, 20228-20238.	5.2	111
137	Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	5.8	111
138	Enhancing the Catalytic Activity of Co ₃ O ₄ for Li–O ₂ Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catalysis, 2018, 8, 1955-1963.	5 . 5	111
139	The Role of Alkali Metal in αâ€MnO ₂ Catalyzed Ammoniaâ€Selective Catalysis. Angewandte Chemie - International Edition, 2019, 58, 6351-6356.	7.2	110
140	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie, 2020, 132, 2727-2731.	1.6	110
141	Improved removal capacity of magnetite for Cr(VI) by electrochemical reduction. Journal of Hazardous Materials, 2019, 374, 26-34.	6.5	108
142	Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 2016, 36, 169-183.	1.0	107
143	Iridium-Triggered Phase Transition of MoS ₂ Nanosheets Boosts Overall Water Splitting in Alkaline Media. ACS Energy Letters, 2019, 4, 368-374.	8.8	105
144	Correlating interfacial octahedral rotations with magnetism in (LaMnO3+ \hat{l})N/(SrTiO3)N superlattices. Nature Communications, 2014, 5, 4283.	5.8	103

#	Article	IF	CITATIONS
145	Molecular-Level Insight into Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ to N ₂ over a Highly Efficient Bifunctional V _{<i>a</i>} -MnO _{<i>x</i>} Catalyst at Low Temperature. ACS Catalysis, 2018, 8, 4937-4949.	5.5	103
146	Sustainable production of benzene from lignin. Nature Communications, 2021, 12, 4534.	5.8	100
147	Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction. Nano-Micro Letters, 2020, 12, 116.	14.4	99
148	Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO ₂ Electroreduction to Ethylene. Angewandte Chemie - International Edition, 2021, 60, 16687-16692.	7.2	99
149	An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1-1.	3.9	98
150	CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O ₂ Battery. ACS Catalysis, 2018, 8, 8953-8960.	5.5	98
151	Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nature Communications, 2021, 12, 2686.	5.8	98
152	Xylem and Phloem Based Transport of CeO ₂ Nanoparticles in Hydroponic Cucumber Plants. Environmental Science & Envir	4.6	97
153	PdBi Singleâ€Atom Alloy Aerogels for Efficient Ethanol Oxidation. Advanced Functional Materials, 2021, 31, 2103465.	7.8	97
154	Simultaneous elimination of cationic uranium(<scp>vi</scp>) and anionic rhenium(<scp>vii</scp>) by graphene oxide–poly(ethyleneimine) macrostructures: a batch, XPS, EXAFS, and DFT combined study. Environmental Science: Nano, 2018, 5, 2077-2087.	2.2	95
155	Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chemical Communications, 2019, 55, 5271-5274.	2.2	95
156	A Singleâ€Atom Nanozyme for Wound Disinfection Applications. Angewandte Chemie, 2019, 131, 4965-4970.	1.6	94
157	A Wearable Hand Rehabilitation System With Soft Gloves. IEEE Transactions on Industrial Informatics, 2021, 17, 943-952.	7.2	93
158	<i>Operando</i> X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst. Energy and Environmental Science, 2021, 14, 906-915.	15.6	93
159	Identifying the Activity Origin of a Cobalt Singleâ€Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Advanced Functional Materials, 2021, 31, 2100547.	7.8	93
160	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^'C Bond Cleavage by a Mnâ€Doped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 8976-8982.	7.2	93
161	Sequential Synthesis and Activeâ€Site Coordination Principle of Precious Metal Singleâ€Atom Catalysts for Oxygen Reduction Reaction and PEM Fuel Cells. Advanced Energy Materials, 2020, 10, 2000689.	10.2	92
162	Activated-carbon-supported K–Co–Mo catalysts for synthesis of higher alcohols from syngas. Catalysis Science and Technology, 2015, 5, 2925-2934.	2.1	90

#	Article	IF	Citations
163	Aqueous CO ₂ Reduction with High Efficiency Using αâ€Co(OH) ₂ â€Supported Atomic Ir Electrocatalysts. Angewandte Chemie - International Edition, 2019, 58, 4669-4673.	7.2	90
164	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie - International Edition, 2021, 60, 21979-21987.	7.2	90
165	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	5.8	89
166	Li ₄ SrCa(SiO ₄) ₂ :Eu ²⁺ : A Potential Temperature Sensor with Unique Optical Thermometric Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9691-9695.	4.0	89
167	Item-Level Indoor Localization With Passive UHF RFID Based on Tag Interaction Analysis. IEEE Transactions on Industrial Electronics, 2014, 61, 2122-2135.	5.2	87
168	Li-Substituted Co-Free Layered P2/O3 Biphasic Na _{0.67} Mn _{0.55} Ni _{0.25} Ti _{0.2–<i>x</i>} Li _{<i>x</i>} as High-Rate-Capability Cathode Materials for Sodium Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 9007-9016.	،Q ₂	:< <i>l</i> sµb>
169	Single-Atom-Based Heterojunction Coupling with Ion-Exchange Reaction for Sensitive Photoelectrochemical Immunoassay. Nano Letters, 2021, 21, 1879-1887.	4.5	86
170	An Internet-of-Things solution for food safety and quality control: A pilot project in China. Journal of Industrial Information Integration, 2016, 3, 1-7.	4.3	85
171	Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environmental Pollution, 2015, 198, 8-14.	3.7	84
172	Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development. Sensors, 2018, 18, 3021.	2.1	84
173	A Smart Dental Health-IoT Platform Based on Intelligent Hardware, Deep Learning, and Mobile Terminal. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 898-906.	3.9	84
174	Self-Adaptive Single-Atom Catalyst Boosting Selective Ferroptosis in Tumor Cells. ACS Nano, 2022, 16, 855-868.	7.3	84
175	Automated trading systems statistical and machine learning methods and hardware implementation: a survey. Enterprise Information Systems, 2019, 13, 132-144.	3.3	83
176	CoFe–Cl Layered Double Hydroxide: A New Cathode Material for Highâ€Performance Chloride Ion Batteries. Advanced Functional Materials, 2019, 29, 1900983.	7.8	83
177	MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Advanced Energy Materials, 2021, 11, 2002753.	10.2	83
178	Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?. Environmental Science & En	4.6	82
179	Amorphous Vanadium Oxide/Molybdenum Oxide Hybrid with Three-Dimensional Ordered Hierarchically Porous Structure as a High-Performance Li-Ion Battery Anode. Chemistry of Materials, 2016, 28, 4180-4190.	3.2	82
180	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	1.6	82

#	Article	IF	CITATIONS
181	Transformation and Immobilization of Chromium by Arbuscular Mycorrhizal Fungi as Revealed by SEM–EDS, TEM–EDS, and XAFS. Environmental Science & Environmental Science & 14036-14047.	4.6	81
182	Significant Promotion of Surface Oxygen Vacancies on Bimetallic CoNi Nanocatalysts for Hydrodeoxygenation of Biomass-derived Vanillin to Produce Methylcyclohexanol. ACS Sustainable Chemistry and Engineering, 2020, 8, 6075-6089.	3.2	81
183	Hydrogen Passivation of M–N–C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements. Advanced Materials, 2021, 33, e2103600.	11.1	81
184	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie - International Edition, 2020, 59, 22171-22178.	7.2	80
185	Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Science of the Total Environment, 2019, 672, 572-582.	3.9	79
186	Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. Chemistry of Materials, 2020, 32, 9107-9114.	3.2	79
187	Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation. ACS Catalysis, 2018, 8, 656-664.	5.5	78
188	Identifying Oxygen Activation/Oxidation Sites for Efficient Soot Combustion over Silver Catalysts Interacted with Nanoflower-Like Hydrotalcite-Derived CoAlO Metal Oxides. ACS Catalysis, 2019, 9, 8772-8784.	5.5	77
189	High-Bandwidth InGaN Self-Powered Detector Arrays toward MIMO Visible Light Communication Based on Micro-LED Arrays. ACS Photonics, 2019, 6, 3186-3195.	3.2	76
190	Ultrathin Co ₃ O ₄ Nanosheets with Edge-Enriched {111} Planes as Efficient Catalysts for Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 3773-3782.	5.5	76
191	Compact modelling of Through-Silicon Vias (TSVs) in three-dimensional (3-D) integrated circuits. , 2009, , .		75
192	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	3.5	74
193	Maximizing throughput over parallel wire structures in the deep submicrometer regime. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003, 11, 224-243.	2.1	73
194	Selective Activation of C–OH, C–O–C, or Câ•C in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catalysis, 2020, 10, 8032-8041.	5.5	73
195	Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst. Nature Communications, 2020, 11, 653.	5.8	72
196	A Low-Power and Flexible Energy Detection IR-UWB Receiver for RFID and Wireless Sensor Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 1470-1482.	3.5	71
197	Wireless sensor network for real-time perishable food supply chain management. Computers and Electronics in Agriculture, 2015, 110, 196-207.	3.7	71
198	Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films. AIP Advances, 2018, 8, .	0.6	71

#	Article	IF	CITATIONS
199	3.4% Solarâ€toâ€Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS ₂ Nanosheets. Advanced Functional Materials, 2022, 32, .	7.8	71
200	A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicology and Environmental Safety, 2020, 189, 109955.	2.9	70
201	Black Phosphorus@Ti ₃ C ₂ T _{<i>x</i>} MXene Composites with Engineered Chemical Bonds for Commercial-Level Capacitive Energy Storage. ACS Nano, 2021, 15, 12975-12987.	7.3	70
202	Atomically Dispersed Ruthenium on Nickel Hydroxide Ultrathin Nanoribbons for Highly Efficient Hydrogen Evolution Reaction in Alkaline Media. Advanced Materials, 2021, 33, e2104764.	11.1	70
203	Defectâ€Induced Selfâ€Reduction and Antiâ€Thermal Quenching in NaZn(PO ₃) ₃ :Mn ²⁺ Red Phosphor. Advanced Optical Materials, 2021, 9, 2100870.	3.6	69
204	Precisely Controlled Hydration Water for Performance Improvement of Organic–Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 5028-5034.	7.8	68
205	Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials, 2016, 316, 34-42.	6.5	68
206	Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. Journal of Materials Science: Materials in Electronics, 2017, 28, 7760-7768.	1.1	68
207	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	4.7	68
208	Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in $0.18-\text{mu}{hbox \{m\}}$ Standard CMOS. IEEE Journal of Solid-State Circuits, 2010, 45, 1746-1758.	3.5	67
209	A blockchain-based architecture for secure and trustworthy operations in the industrial Internet of Things. Journal of Industrial Information Integration, 2021, 21, 100190.	4.3	67
210	Boosting the performance of perovskite solar cells through a novel active passivation method. Journal of Materials Chemistry A, 2018, 6, 15853-15858.	5.2	66
211	Fabrication of 2D metal–organic framework nanosheets with tailorable thickness using bio-based surfactants and their application in catalysis. Green Chemistry, 2019, 21, 54-58.	4.6	66
212	Seleniumâ€Doped Hierarchically Porous Carbon Nanosheets as an Efficient Metalâ€Free Electrocatalyst for CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 1906194.	7.8	66
213	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	5.8	65
214	Fe ₃ C-Assisted Single Atomic Fe Sites for Sensitive Electrochemical Biosensing. Analytical Chemistry, 2021, 93, 5334-5342.	3.2	65
215	Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids. Advanced Optical Materials, 2018, 6, 1701407.	3.6	64
216	Kinetic Enhancement of Sulfur Cathodes by Nâ€Doped Porous Graphitic Carbon with Bound VN Nanocrystals. Small, 2020, 16, e2004950.	5.2	64

#	Article	IF	Citations
217	Extending systems-on-chip to the third dimension: performance, cost and technological tradeoffs. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2007, , .	0.0	63
218	Radio frequency identification enabled wireless sensing for intelligent food logistics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130313.	1.6	63
219	Iron Single-Atom Catalysts Boost Photoelectrochemical Detection by Integrating Interfacial Oxygen Reduction and Enzyme-Mimicking Activity. ACS Nano, 2022, 16, 2997-3007.	7.3	63
220	Low cost air pollution monitoring systems: A review of protocols and enabling technologies. Journal of Industrial Information Integration, 2020, 17, 100123.	4.3	62
221	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€S Batteries. Angewandte Chemie, 2020, 132, 22355-22362.	1.6	62
222	Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 11246-11254.	5.2	62
223	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	11.1	62
224	Hydrogenated Anatase TiO ₂ as Lithium-Ion Battery Anode: Size–Reactivity Correlation. ACS Applied Materials & Diterfaces, 2016, 8, 20074-20081.	4.0	61
225	Compact Circularly Polarized Archimedean Spiral Antenna for Ultrawideband Communication Applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 129-132.	2.4	61
226	Ultrathin PdAuBiTe Nanosheets as Highâ€Performance Oxygen Reduction Catalysts for a Direct Methanol Fuel Cell Device. Advanced Materials, 2021, 33, e2103383.	11.1	61
227	High-Performance Binary Mo–Ni Catalysts for Efficient Carbon Removal during Carbon Dioxide Reforming of Methane. ACS Catalysis, 2021, 11, 12087-12095.	5.5	61
228	Enhanced Dissolution and Transformation of ZnO Nanoparticles: The Role of Inositol Hexakisphosphate. Environmental Science & E	4.6	60
229	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science, 2019, 10, 5345-5352.	3.7	60
230	Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Research, 2020, 13, 768-774.	5.8	60
231	A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for Formaldehyde Oxidation at Ambient Temperature. ACS Catalysis, 2021, 11, 456-465.	5.5	60
232	Bottom-up growth of homogeneous Moir \tilde{A} © superlattices in bismuth oxychloride spiral nanosheets. Nature Communications, 2019, 10, 4472.	5.8	59
233	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	1.6	59
234	Two Types of Single-Atom FeN ₄ and FeN ₅ Electrocatalytic Active Centers on N-Doped Carbon Driving High Performance of the SA-Fe-NC Oxygen Reduction Reaction Catalyst. Chemistry of Materials, 2021, 33, 5542-5554.	3.2	59

#	Article	IF	CITATIONS
235	Bio-Patch Design and Implementation Based on a Low-Power System-on-Chip and Paper-Based Inkjet Printing Technology. IEEE Transactions on Information Technology in Biomedicine, 2012, 16, 1043-1050.	3.6	58
236	A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. Journal of Materials Chemistry A, 2019, 7, 12434-12439.	5.2	58
237	A unified intermediate and mechanism for soot combustion on potassium-supported oxides. Scientific Reports, 2014, 4, 4725.	1.6	57
238	The Solidâ€Phase Synthesis of an Feâ€N Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	1.6	57
239	Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, e1900248.	5.2	57
240	Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: Elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques. Journal of Hazardous Materials, 2020, 389, 122117.	6.5	57
241	Interactions between Th(<scp>iv</scp>) and graphene oxide: experimental and density functional theoretical investigations. RSC Advances, 2014, 4, 3340-3347.	1.7	56
242	Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chemical Science, 2019, 10, 2578-2584.	3.7	56
243	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie, 2019, 131, 746-750.	1.6	55
244	Fe–N–C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay. Analytical Chemistry, 2021, 93, 12353-12359.	3.2	55
245	Axial Ligand-Engineered Single-Atom Catalysts with Boosted Enzyme-Like Activity for Sensitive Immunoassay. Analytical Chemistry, 2021, 93, 12758-12766.	3.2	55
246	Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials, 2014, 35, 6412-6421.	5.7	54
247	Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy. Environmental Pollution, 2017, 225, 361-369.	3.7	54
248	Bioactive Metal–Organic Frameworks with Specific Metal–Nitrogen (M–N) Active Sites for Efficient Sonodynamic Tumor Therapy. ACS Nano, 2021, 15, 20003-20012.	7.3	53
249	Electrodeposited Mo ₃ S ₁₃ Films from (NH ₄) ₂ Mo ₃ S ₁₃ ·2H ₂ O for Electrocatalysis of Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18675-18681.	4.0	52
250	Construction of Dualâ€Activeâ€Site Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	5.2	52
251	Neutral Znâ€Air Battery Assembled with Singleâ€Atom Iridium Catalysts for Sensitive Selfâ€Powered Sensing System. Advanced Functional Materials, 2021, 31, 2101193.	7.8	52
252	Single Co Sites in Ordered SiO ₂ Channels for Boosting Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2022, 12, 2632-2638.	5.5	52

#	Article	IF	CITATIONS
253	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	1.6	51
254	Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation. Environmental Pollution, 2019, 248, 82-89.	3.7	51
255	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11 , 1431 .	5.8	51
256	Spectral Properties and Energy Transfer of a Potential Solar Energy Converter. Chemistry of Materials, 2016, 28, 2834-2843.	3.2	50
257	Laser-based white-light source for high-speed underwater wireless optical communication and high-efficiency underwater solid-state lighting. Optics Express, 2018, 26, 19259.	1.7	50
258	Enhancing CO ₂ Electrocatalysis on 2D Porphyrinâ€Based Metal–Organic Framework Nanosheets Coupled with Visibleâ€Light. Small Methods, 2021, 5, e2000991.	4.6	50
259	A remote-powered RFID tag with 10Mb/s UWB uplink and & #x2212; 18.5dBm sensitivity UHF downlink in 0.18& #x00B5; m CMOS. , 2009, , .		49
260	Trophic Transfer and Transformation of CeO ₂ Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. Environmental Science & Exposure Routes. Environmental Routes. Environmen	4.6	49
261	A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO ₂ Reduction at High Current Densities. Advanced Functional Materials, 2021, 31, 2104243.	7.8	49
262	One-pot synthesis of MoSe2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy. Nano Research, 2017, 10, 2667-2682.	5.8	48
263	A sacrificial Zn strategy enables anchoring of metal single atoms on the exposed surface of holey 2D molybdenum carbide nanosheets for efficient electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 3071-3082.	5.2	48
264	Silica nanoparticles alleviate mercury toxicity <i>via</i> immobilization and inactivation of Hg(<scp>ii</scp>) in soybean (<i>Glycine max</i>). Environmental Science: Nano, 2020, 7, 1807-1817.	2.2	48
265	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14087-14094.	4.0	48
266	Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level. Analytical Chemistry, 2021, 93, 8663-8670.	3.2	48
267	Ultralong‣ife Chloride Ion Batteries Achieved by the Synergistic Contribution of Intralayer Metals in Layered Double Hydroxides. Advanced Functional Materials, 2020, 30, 1907448.	7.8	47
268	Atomically Dispersed Ru Catalyst for Low-Temperature Nitrogen Activation to Ammonia via an Associative Mechanism. ACS Catalysis, 2020, 10, 9504-9514.	5 . 5	47
269	NiMn-Cl Layered Double Hydroxide/Carbon Nanotube Networks for High-Performance Chloride Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4559-4568.	2.5	47
270	High-performance, long lifetime chloride ion battery using a NiFe–Cl layered double hydroxide cathode. Journal of Materials Chemistry A, 2020, 8, 12548-12555.	5 . 2	47

#	Article	IF	CITATIONS
271	Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum. Scientific Reports, 2015, 5, 9443.	1.6	46
272	Plant species-dependent transformation and translocation of ceria nanoparticles. Environmental Science: Nano, 2019, 6, 60-67.	2.2	46
273	Porous \hat{I}^3 -Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14, 1435-1442.	5.8	46
274	Ultra-small Ru nanoparticles embedded on Fe–Ni(OH) ₂ nanosheets for efficient water splitting at a large current density with long-term stability of 680 hours. Journal of Materials Chemistry A, 2022, 10, 4817-4824.	5.2	46
275	Delay-aware and reliability-aware contention-free MF–TDMA protocol for automated RFID monitoring in industrial IoT. Journal of Industrial Information Integration, 2016, 3, 8-19.	4.3	45
276	Effect of Soil Fulvic and Humic Acids on Pb Binding to the Goethite/Solution Interface: Ligand Charge Distribution Modeling and Speciation Distribution of Pb. Environmental Science & Echnology, 2018, 52, 1348-1356.	4.6	45
277	Enhanced CO ₂ electroreduction <i>via</i> interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn ₂ S ₄ hybrids. Chemical Science, 2019, 10, 1659-1663.	3.7	45
278	Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO ₂ Nanoparticles in Cucumber Plants. ACS Applied Materials & Distriction (1905-16913).	4.0	45
279	Substrate Metabolism-Driven Assembly of High-Quality CdS _{<i>x</i>} Se _{1–<i>x</i>} Quantum Dots in <i>Escherichia coli</i> : Molecular Mechanisms and Bioimaging Application. ACS Nano, 2019, 13, 5841-5851.	7.3	45
280	Enhancing the Catalytic Activity of Co ₃ O ₄ Nanosheets for Li-O ₂ Batteries by the Incoporation of Oxygen Vacancy with Hydrazine Hydrate Reduction. Inorganic Chemistry, 2019, 58, 4989-4996.	1.9	45
281	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	1.6	45
282	Pt Nanoparticles Supported on N/Ce-Doped Activated Carbon for the Catalytic Oxidation of Formaldehyde at Room Temperature. ACS Applied Nano Materials, 2020, 3, 2614-2624.	2.4	45
283	A Low Power, Startup Ensured and Constant Amplitude Class-C VCO in 0.18 \$mu {m m}\$ CMOS. IEEE Microwave and Wireless Components Letters, 2011, 21, 427-429.	2.0	44
284	Shape-Dependent Transformation and Translocation of Ceria Nanoparticles in Cucumber Plants. Environmental Science and Technology Letters, 2017, 4, 380-385.	3.9	44
285	Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO ₂ Conversion to Ethylene. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
286	Coexistence of self-reduction from Mn ⁴⁺ to Mn ²⁺ and elastico-mechanoluminescence in diphase KZn(PO ₃) ₃ :Mn ²⁺ . Journal of Materials Chemistry C, 2019, 7, 7096-7103.	2.7	43
287	Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction. Energy and Environmental Science, 2021, 14, 4847-4857.	15.6	43
288	Two-Dimensional and Three-Dimensional Integration of Heterogeneous Electronic Systems Under Cost, Performance, and Technological Constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28, 1237-1250.	1.9	42

#	Article	IF	CITATIONS
289	PERFORMANCE-OPTIMIZED QUADRATE BOWTIE RFID ANTENNAS FOR COST-EFFECTIVE AND ECO-FRIENDLY INDUSTRIAL APPLICATIONS. Progress in Electromagnetics Research, 2012, 126, 49-64.	1.6	42
290	Lithium Storage in Microstructures of Amorphous Mixedâ€Valence Vanadium Oxide as Anode Materials. ChemSusChem, 2015, 8, 2212-2222.	3.6	42
291	An optical dynamic study of MAPbBr ₃ single crystals passivated with MAPbCl ₃ /l ₃ -MAPbBr ₃ heterojunctions. Physical Chemistry Chemical Physics, 2017, 19, 4516-4521.	1.3	42
292	Active Site Identification and Modification of Electronic States by Atomic-Scale Doping To Enhance Oxide Catalyst Innovation. ACS Catalysis, 2018, 8, 1399-1404.	5.5	42
293	Host Differential Sensitization toward Color/Lifetimeâ€Tuned Lanthanide Coordination Polymers for Optical Multiplexing. Angewandte Chemie - International Edition, 2020, 59, 23810-23816.	7.2	42
294	Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features. Environmental Science & E	4.6	42
295	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	6.6	42
296	Interface-Promoted Direct Oxidation of <i>p</i> -Arsanilic Acid and Removal of Total Arsenic by the Coupling of Peroxymonosulfate and Mn-Fe-Mixed Oxide. Environmental Science & Technology, 2021, 55, 7063-7071.	4.6	42
297	Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Analytical Chemistry, 2021, 93, 9949-9957.	3.2	42
298	Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy. Scientific Reports, 2015, 5, 15012.	1.6	41
299	Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research, 2019, 12, 1167-1172.	5.8	41
300	Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano Research, 2022, 15, 5024-5031.	5.8	41
301	Electrical performance and reliability evaluation of inkjet-printed Ag interconnections on paper substrates. Materials Letters, 2012, 88, 68-72.	1.3	40
302	Directly Printed Packaging-Paper-Based Chipless RFID Tag With Coplanar \$LC\$ Resonator. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 325-328.	2.4	40
303	The <i>in situ</i> study of surface species and structures of oxide-derived copper catalysts for electrochemical CO ₂ reduction. Chemical Science, 2021, 12, 5938-5943.	3.7	40
304	High efficiency MAPbl _{3â^'x} Cl _x perovskite solar cell <i>via</i> interfacial passivation. Nanoscale, 2018, 10, 18909-18914.	2.8	39
305	Self-supported hydrogenolysis of aromatic ethers to arenes. Science Advances, 2019, 5, eaax6839.	4.7	39
306	Strong Electron Coupling from the Sub-Nanometer Pd Clusters Confined in Porous Ceria Nanorods for Highly Efficient Electrochemical Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 966-973.	2.5	39

#	Article	IF	Citations
307	Boron-doped CuO nanobundles for electroreduction of carbon dioxide to ethylene. Green Chemistry, 2020, 22, 2750-2754.	4.6	39
308	Cooperative Effects between Ni-Mo Alloy Sites and Defective Structures over Hierarchical Ni-Mo Bimetallic Catalysts Enable the Enhanced Hydrodeoxygenation Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 11604-11615.	3.2	39
309	Propelling polysulfide redox conversion by d-band modulation for high sulfur loading and low temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 18526-18536.	5.2	39
310	Electrochemical Strategy for the Simultaneous Production of Cyclohexanone and Benzoquinone by the Reaction of Phenol and Water. Journal of the American Chemical Society, 2022, 144, 1556-1571.	6.6	39
311	Cost and performance analysis for mixed-signal system implementation: system-on-chip or system-on-package?. IEEE Transactions on Electronics Packaging Manufacturing, 2002, 25, 262-272.	1.6	38
312	Interconnect intellectual property for Network-on-Chip (NoC). Journal of Systems Architecture, 2004, 50, 65-79.	2.5	38
313	Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization. Lab on A Chip, 2016, 16, 4406-4414.	3.1	38
314	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	5.8	38
315	Roomâ€Temperature Synthesis of Covalent Organic Framework (COF‣ZU1) Nanobars in CO ₂ /Water Solvent. ChemSusChem, 2018, 11, 3576-3580.	3.6	38
316	Significantly improved Li-ion diffusion kinetics and reversibility of Li ₂ O in a MoO ₂ anode: the effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage. Journal of Materials Chemistry A, 2019, 7, 17570-17580.	5.2	38
317	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie - International Edition, 2021, 60, 15248-15253.	7.2	38
318	Siteâ€Specific Axial Oxygen Coordinated FeN ₄ Active Sites for Highly Selective Electroreduction of Carbon Dioxide. Advanced Functional Materials, 2022, 32, .	7.8	38
319	An innovative fully printable RFID technology based on high speed time-domain reflections. , 2006, , .		37
320	Gbps Long-Distance Real-Time Visible Light Communications Using a High-Bandwidth GaN-Based Micro-LED. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	37
321	Highly Mesoporous Ru-MIL-125-NH ₂ Produced by Supercritical Fluid for Efficient Photocatalytic Hydrogen Production. ACS Applied Energy Materials, 2019, 2, 4964-4970.	2.5	37
322	Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Research, 2020, 13, 983-988.	5.8	37
323	Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic Electrochemiluminescence. Analytical Chemistry, 2022, 94, 9459-9465.	3.2	37
324	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie - International Edition, 2016, 55, 11372-11376.	7.2	36

#	Article	IF	Citations
325	Amorphous MoO _{3â°'x} nanosheets prepared by the reduction of crystalline MoO ₃ by Mo metal for LSPR and photothermal conversion. Chemical Communications, 2019, 55, 12527-12530.	2.2	36
326	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	5.2	36
327	Defectâ€Engineered Nanozymeâ€Linked Receptors. Small, 2021, 17, e2101907.	5.2	36
328	Heterogeneous Integration of Bio-Sensing System-on-Chip and Printed Electronics. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 672-682.	2.7	35
329	A CaMnAl-hydrotalcite solid basic catalyst toward the aldol condensation reaction with a comparable level to liquid alkali catalysts. Green Chemistry, 2018, 20, 3071-3080.	4.6	35
330	Highly efficient ammonia synthesis at low temperature over a Ru–Co catalyst with dual atomically dispersed active centers. Chemical Science, 2021, 12, 7125-7137.	3.7	35
331	Green Synthesis of a Highly Efficient and Stable Single-Atom Iron Catalyst Anchored on Nitrogen-Doped Carbon Nanorods for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 137-146.	3.2	35
332	Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O ₂ Electrochemiluminescence Detection of Prostate-Specific Antigen. Analytical Chemistry, 2022, 94, 9758-9765.	3.2	35
333	Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology. , 2008, , .		34
334	Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles. Nano Letters, 2017, 17, 7892-7896.	4.5	34
335	Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO ₂ Slabs. ACS Applied Materials & Diterfaces, 2018, 10, 1707-1718.	4.0	34
336	Solar Irradiation Induced Transformation of Ferrihydrite in the Presence of Aqueous Fe ²⁺ . Environmental Science & E	4.6	34
337	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	2.2	34
338	Inhalation bioaccessibility of Cd, Cu, Pb and Zn and speciation of Pb in particulate matter fractions from areas with different pollution characteristics in Henan Province, China. Ecotoxicology and Environmental Safety, 2019, 175, 192-200.	2.9	34
339	Support morphology-dependent alloying behaviour and interfacial effects of bimetallic Ni–Cu/CeO ₂ catalysts. Chemical Science, 2019, 10, 3556-3566.	3.7	34
340	An Enzymeâ€Mimicking Singleâ€Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management. Angewandte Chemie, 2020, 132, 5146-5153.	1.6	34
341	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	5.5	34
342	Subsurface-Regulated PtGa Nanoparticles Confined in Silicalite-1 for Propane Dehydrogenation. ACS Applied Materials & D	4.0	34

#	Article	IF	CITATIONS
343	Fast modeling of core switching noise on distributed LRC power grid in ULSI circuits. IEEE Transactions on Advanced Packaging, 2001, 24, 245-254.	1.7	33
344	Integration of f-MWCNT Sensor and Printed Circuits on Paper Substrate. IEEE Sensors Journal, 2013, 13, 3948-3956.	2.4	33
345	The Effect of Augmented Reality and Virtual Reality on Inducing Anxiety for Exposure Therapy: A Comparison Using Heart Rate Variability. Journal of Healthcare Engineering, 2018, 2018, 1-8.	1.1	33
346	Activity enhancement of Pt/MnO _x catalyst by novel β-MnO ₂ for low-temperature CO oxidation: study of the CO–O ₂ competitive adsorption and active oxygen species. Catalysis Science and Technology, 2019, 9, 347-354.	2.1	33
347	Cd2+ adsorption performance of tunnel-structured manganese oxides driven by electrochemically controlled redox. Environmental Pollution, 2019, 244, 783-791.	3.7	33
348	A pervasive and preventive healthcare solution for medication noncompliance and daily monitoring. , 2009, , .		32
349	The Design of All-Digital Polar Transmitter Based on ADPLL and Phase Synchronized ΔΣ Modulator. IEEE Journal of Solid-State Circuits, 2012, 47, 1154-1164.	3.5	32
350	Addition of Pd on La _{0.7} Sr _{0.3} CoO ₃ Perovskite To Enhance Catalytic Removal of NO _{<i>x</i>} . Industrial & Engineering Chemistry Research, 2018, 57, 521-531.	1.8	32
351	Tunable flexible artificial synapses: a new path toward a wearable electronic system. Npj Flexible Electronics, 2018, 2, .	5.1	32
352	Cu _x Ni _y alloy nanoparticles embedded in a nitrogen–carbon network for efficient conversion of carbon dioxide. Chemical Science, 2019, 10, 4491-4496.	3.7	32
353	S-Edge-rich Mo _x S _y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale, 2019, 11, 20284-20294.	2.8	32
354	A Low Power Cardiovascular Healthcare System With Cross-Layer Optimization From Sensing Patch to Cloud Platform. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 314-329.	2.7	32
355	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	1.6	32
356	Physically Adsorbed Metal Ions in Porous Supports as Electrocatalysts for Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1909889.	7.8	32
357	Al ³⁺ Dopants Induced Mg ²⁺ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. Journal of the American Chemical Society, 2022, 144, 4321-4326.	6.6	32
358	A hybrid reader tranceiver design for industrial internet of things. Journal of Industrial Information Integration, 2016, 2, 19-29.	4.3	31
359	Effects of Al3+ doping on the structure and properties of goethite and its adsorption behavior towards phosphate. Journal of Environmental Sciences, 2016, 45, 18-27.	3.2	31
360	Modification of Cu/SiO ₂ Catalysts by La ₂ O ₃ to Quantitatively Tune Cu ⁺ â€Cu ⁰ Dual Sites with Improved Catalytic Activities and Stabilities for Dimethyl Ether Steam Reforming. ChemCatChem, 2018, 10, 3862-3871.	1.8	31

#	Article	IF	Citations
361	Integration of single Co atoms and Ru nanoclusters boosts the cathodic performance of nitrogen-doped 3D graphene in lithium–oxygen batteries. Journal of Materials Chemistry A, 2021, 9, 10747-10757.	5.2	31
362	Future RFID and Wireless Sensors for Ubiquitous Intelligence. , 2008, , .		30
363	Iron-regulated NiPS for enhanced oxygen evolution efficiency. Journal of Materials Chemistry A, 2020, 8, 23580-23589.	5.2	30
364	Creation of near-infrared luminescent phosphors enabled by topotactic reduction of bismuth-activated red-emitting crystals. Journal of Materials Chemistry C, 2016, 4, 9489-9498.	2.7	29
365	Unconventional Luminescent Centers in Metastable Phases Created by Topochemical Reduction Reactions. Angewandte Chemie - International Edition, 2016, 55, 4967-4971.	7.2	29
366	A Smart Unstaffed Retail Shop Based on Artificial Intelligence and IoT. , 2018, , .		29
367	A Facile Route for Constructing Effective Cuâ ² N _{<i>x</i>} Active Sites for Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 4070-4079.	1.7	29
368	Improved catalytic performance of Co-MOF-74 by nanostructure construction. Green Chemistry, 2020, 22, 5995-6000.	4.6	29
369	Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode. IEEE Photonics Journal, 2020, 12, 1-10.	1.0	29
370	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	5.6	29
371	Switching Optimally Balanced Fe–N Interaction Enables Extremely Stable Energy Storage. Energy and Environmental Materials, 2023, 6, .	7.3	29
372	A Novel Passive Tag with Asymmetric Wireless Link for RFID and WSN Applications. , 2007, , .		28
373	An efficient passive RFID system for ubiquitous identification and sensing using impulse UWB radio. Elektrotechnik Und Informationstechnik, 2007, 124, 397-403.	0.7	28
374	Tunable Thermal Expansion from Negative, Zero, to Positive in Cubic Prussian Blue Analogues of GaFe(CN) ₆ . Inorganic Chemistry, 2018, 57, 14027-14030.	1.9	28
375	Aerosol jet printed silver nanowire transparent electrode for flexible electronic application. Journal of Applied Physics, 2018, 123, .	1.1	28
376	Amorphous Cobalt Iron Borate Grown on Carbon Paper as a Precatalyst for Water Oxidation. ChemSusChem, 2019, 12, 3524-3531.	3.6	28
377	Discovery of a new intercalation-type anode for high-performance sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 15371-15377.	5.2	28
378	IEEE 1588 for Clock Synchronization in Industrial IoT and Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies. IEEE Access, 2020, 8, 155660-155678.	2.6	28

#	Article	IF	Citations
379	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28
380	Tuning Co ²⁺ Coordination in Cobalt Layered Double Hydroxide Nanosheets via Fe ³⁺ Doping for Efficient Oxygen Evolution. Inorganic Chemistry, 2021, 60, 5252-5263.	1.9	28
381	Construction of Spatial Effect from Atomically Dispersed Co Anchoring on Subnanometer Ru Cluster for Enhanced N ₂ -to-NH ₃ Conversion. ACS Catalysis, 2021, 11, 4430-4440.	5.5	28
382	Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Science China Materials, 2021, 64, 2729-2738.	3.5	28
383	Facilitating Reversible Cation Migration and Suppressing O ₂ Escape for High Performance Liâ€Rich Oxide Cathodes. Small, 2022, 18, e2201014.	5.2	28
384	DEVELOPMENT AND ANALYSIS OF FLEXIBLE UHF RFID ANTENNAS FOR "GREEN" ELECTRONICS. Progress in Electromagnetics Research, 2012, 130, 1-15.	1.6	27
385	General Method for Synthesis Transitionâ€Metal Phosphide/Nitrogen and Phosphide Doped Carbon Materials with Yolkâ€Shell Structure for Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 1722-1731.	1.8	27
386	Copper Isolated Sites on N-Doped Carbon Nanoframes for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14030-14038.	3.2	27
387	Carbon black-supported FM–N–C (FM = Fe, Co, and Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. Journal of Materials Chemistry A, 2020, 8, 13166-13172.	5.2	27
388	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	2.5	27
389	Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17651-17658.	4.0	27
390	The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation. Journal of Healthcare Engineering, 2017, 2017, 1-9.	1.1	26
391	Optical Properties of Ce-Doped Li ₄ SrCa(SiO ₄) ₂ : A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2018, 57, 1116-1124.	1.9	26
392	A wide-range operating synaptic device based on organic ferroelectricity with low energy consumption. RSC Advances, 2018, 8, 26549-26553.	1.7	26
393	N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2021, 9, 12659-12669.	5.2	26
394	Current - voltage characteristic of asymmetric ferroelectric capacitors. Journal Physics D: Applied Physics, 1996, 29, 457-461.	1.3	25
395	Formation of BaTiO ₃ and PbTiO ₃ thin films under mild hydrothermal conditions. Journal of Materials Research, 1996, 11, 821-824.	1.2	25
396	Morphological development of nanofibrillar composites of polyaniline and carbon nanotubes. Synthetic Metals, 2010, 160, 664-668.	2.1	25

#	Article	IF	CITATIONS
397	The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe–N coordination for the oxygen reduction reaction. RSC Advances, 2018, 8, 24509-24516.	1.7	25
398	NiCu Nanoparticles for Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds. ACS Applied Nano Materials, 2020, 3, 9226-9237.	2.4	25
399	Design of Smart Unstaffed Retail Shop Based on IoT and Artificial Intelligence. IEEE Access, 2020, 8, 147728-147737.	2.6	25
400	Interstitial oxygen defect induced mechanoluminescence in KCa(PO ₃) ₃ :Mn ²⁺ . Journal of Materials Chemistry C, 2020, 8, 6587-6594.	2.7	25
401	Vertical drift ofP–Ehysteresis loop in asymmetric ferroelectric capacitors. Journal of Applied Physics, 1996, 79, 8634-8637.	1.1	24
402	Flexible UHF Resistive Humidity Sensors Based on Carbon Nanotubes. IEEE Sensors Journal, 2012, 12, 2844-2850.	2.4	24
403	Analytical models for channel potential, threshold voltage, and subthreshold swing of junctionless triple-gate FinFETs. Microelectronics Journal, 2016, 50, 60-65.	1.1	24
404	A 2.4-GHz ISM RF and UWB hybrid RFID real-time locating system for industrial enterprise Internet of Things. Enterprise Information Systems, 2017, 11, 909-926.	3.3	24
405	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	1.6	24
406	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie, 2021, 133, 15376-15381.	1.6	24
407	A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 511-523.	2.7	24
408	An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate., 2010,,.		23
409	The Potential of Cuâ€SAPOâ€44 in the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ . ChemCatChem, 2016, 8, 3740-3745.	1.8	23
410	Highly Efficient Electroreduction of CO ₂ to C2+ Alcohols on Heterogeneous Dual Active Sites. Angewandte Chemie, 2020, 132, 16601-16606.	1.6	23
411	Mitigating the P2–O2 transition and Na ⁺ /vacancy ordering in Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ by anion/cation dual-doping for fast and stable Na ⁺ insertion/extraction. Journal of Materials Chemistry A, 2021, 9, 10803-10811.	5.2	23
412	通过ä,€ç§ååŒç−ç•¥è°fèŠ,P2åž‹Na0.67Mn0.5Fe0.5O2æ£æžææ−™çš"é~′/é~³ç¦»åæ°§åŒ−è¿~原åå°". Scienc	e China M	ate ds ls, 2020,
413	Promoted Electron Transfer and Surface Absorption by Single Nickel Atoms for Photocatalytic Cross-Coupling of Aromatic Alcohols and Aliphatic Amines under Visible Light. ACS Applied Materials & Light County (1988) (1988	4.0	23
414	Construction of Porphyrin Porous Organic Cage as a Support for Single Cobalt Atoms for Photocatalytic Oxidation in Visible Light. ACS Catalysis, 2022, 12, 5827-5833.	5. 5	23

#	Article	IF	Citations
415	Compressibility of a natural smithsonite ZnCO ₃ up to 50ÂGPa. High Pressure Research, 2014, 34, 89-99.	0.4	22
416	Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil. Environmental Science and Pollution Research, 2018, 25, 32130-32139.	2.7	22
417	A Wirelessly Powered UWB RFID Sensor Tag With Time-Domain Analog-to-Information Interface. IEEE Journal of Solid-State Circuits, 2018, 53, 2227-2239.	3.5	22
418	Aerobic selective oxidation of methylaromatics to benzoic acids over Co@N/Co-CNTs with high loading CoN ₄ species. Journal of Materials Chemistry A, 2019, 7, 27212-27216.	5.2	22
419	Selectively Upgrading Lignin Derivatives to Carboxylates through Electrochemical Oxidative C(OH)â^'C Bond Cleavage by a Mnâ€Doped Cobalt Oxyhydroxide Catalyst. Angewandte Chemie, 2021, 133, 9058-9064.	1.6	22
420	Constructing single Cu–N ₃ sites for CO ₂ electrochemical reduction over a wide potential range. Green Chemistry, 2021, 23, 5461-5466.	4.6	22
421	Absorption and scattering effects of Maalox, chlorophyll, and sea salt on a micro-LED-based underwater wireless optical communication [Invited]. Chinese Optics Letters, 2019, 17, 100010.	1.3	22
422	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9 , .	4.6	22
423	Cost and Performance Tradeoff Analysis in Radio and Mixed-Signal System-on-Package Design. IEEE Transactions on Advanced Packaging, 2004, 27, 364-375.	1.7	21
424	Analytical Evaluation of Retransmission Schemes in Wireless Sensor Networks. , 2009, , .		21
425	System integration of smart packages using printed electronics. , 2012, , .		21
426	Code division multiple access/pulse position modulation ultraâ€wideband radio frequency identification for Internet of Things: concept and analysis. International Journal of Communication Systems, 2012, 25, 1103-1121.	1.6	21
427	Design of fully printable and configurable chipless RFID tag on flexible substrate. Microwave and Optical Technology Letters, 2012, 54, 226-230.	0.9	21
428	Chipless RFID tags fabricated by fully printing of metallic inks. Annales Des Telecommunications/Annals of Telecommunications, 2013, 68, 401-413.	1.6	21
429	Giant Enhancement of Luminescence from Phosphors through Oxygenâ€Vacancyâ€Mediated Chemical Pressure Relaxation. Advanced Optical Materials, 2017, 5, 1700448.	3.6	21
430	Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Research, 2018, 11, 2357-2365.	5.8	21
431	A Selfâ€Sacrificing Dualâ€Template Strategy to Heteroatomâ€Enriched Porous Carbon Nanosheets with High Pyridinicâ€N and Pyrrolicâ€N Content for Oxygen Reduction Reaction and Sodium Storage. Advanced Materials Interfaces, 2018, 5, 1801149.	1.9	21
432	Activity enhancement <i>via</i> borate incorporation into a NiFe (oxy)hydroxide catalyst for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 16959-16964.	5.2	21

#	Article	IF	Citations
433	Single Atoms Anchored on Cobalt-Based Catalysts Derived from Hydrogels Containing Phthalocyanine toward the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 8338-8347.	3.2	21
434	Detection range extended 2D Ruddlesden–Popper perovskite photodetectors. Journal of Materials Chemistry C, 2020, 8, 3359-3366.	2.7	21
435	Boosting CO ₂ Electroreduction via the Synergistic Effect of Tuning Cationic Clusters and Visibleâ€Light Irradiation. Advanced Materials, 2021, 33, e2101886.	11.1	21
436	Oxygen-Reconstituted Active Species of Single-Atom Cu Catalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 7593023.	2.8	21
437	CMOS RF mixer with digitally enhanced IIP2. Electronics Letters, 2008, 44, 121.	0.5	20
438	Far-field RF powering system for RFID and implantable devices with monolithically integrated on-chip antenna. , $2010, \ldots$		20
439	Ink-jet printed thin-film transistors with carbon nanotube channels shaped in long strips. Journal of Applied Physics, 2011, 109, 084915.	1.1	20
440	Evaluating Sustainability, Environment Assessment and Toxic Emissions in Life Cycle Stages of Printed Antenna. Procedia Engineering, 2012, 30, 508-513.	1.2	20
441	Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation. BioMed Research International, 2016, 2016, 1-10.	0.9	20
442	Insight into Copper Oxideâ€√in Oxide Catalysts for the Catalytic Oxidation of Carbon Monoxide: Identification of Active Copper Species and a Reaction Mechanism. ChemCatChem, 2017, 9, 3226-3235.	1.8	20
443	Aqueous CO ₂ Reduction with High Efficiency Using αâ€Co(OH) ₂ â€Supported Atomic Ir Electrocatalysts. Angewandte Chemie, 2019, 131, 4717-4721.	1.6	20
444	Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 3203-3210.	5.2	20
445	Efficient Bifunctional Catalytic Electrodes with Uniformly Distributed NiN ₂ Active Sites and Channels for Longâ€Lasting Rechargeable Zinc–Air Batteries. Small, 2020, 16, e2002518.	5.2	20
446	Diffusionlessâ€Like Transformation Unlocks Pseudocapacitance with Bulk Utilization: Reinventing Fe ₂ O ₃ in Alkaline Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	20
447	Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chemical Science, 2021, 12, 14599-14605.	3.7	20
448	Oxygen vacancy content drives self-reduction and anti-thermal quenching. Journal of Materials Chemistry C, 2022, 10, 4317-4326.	2.7	20
449	Hierarchical Architecture of Wellâ€Aligned Nanotubes Supported Bimetallic Catalysis for Efficient Oxygen Redox. Advanced Functional Materials, 2022, 32, .	7.8	20
450	The design of an electronic pedigree system for food safety. Information Systems Frontiers, 2015, 17, 275-287.	4.1	19

#	Article	IF	CITATIONS
451	Highly photocatalytic TiO2interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26, 364001.	1.3	19
452	Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr3) single crystals. Applied Physics Letters, 2017, 111, .	1.5	19
453	A Metastable Crystalline Phase in Twoâ€Dimensional Metallic Oxide Nanoplates. Angewandte Chemie - International Edition, 2019, 58, 2055-2059.	7.2	19
454	Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi ₂ WO ₆ microflowers. Green Chemistry, 2021, 23, 2913-2917.	4.6	19
455	Growth and ferroelectric properties of strontium bismuth tantalite thin films using pulsed laser deposition combined with an annealing process. Journal Physics D: Applied Physics, 1997, 30, 527-532.	1.3	18
456	COSMO: CO-Simulation with MATLAB and OMNeT++ for Indoor Wireless Networks., 2010,,.		18
457	DESIGN AND FABRICATION OF WIDEBAND ARCHIMEDEAN SPIRAL ANTENNA BASED ULTRA-LOW COST "GREEN" MODULES FOR RFID SENSING AND WIRELESS APPLICATIONS. Progress in Electromagnetics Research, 2012, 130, 241-256.	1.6	18
458	Magneticâ€Fieldâ€Stimulated Efficient Photocatalytic N 2 Fixation over Defective BaTiO 3 Perovskites. Angewandte Chemie, 2021, 133, 12017-12025.	1.6	18
459	Flexible and Stretchable Dry Active Electrodes With PDMS and Silver Flakes for Bio-Potentials Sensing Systems. IEEE Sensors Journal, 2021, 21, 12255-12268.	2.4	18
460	Integrating Dissociative and Associative Routes for Efficient Ammonia Synthesis over a TiCN-Promoted Ru-Based Catalyst. ACS Catalysis, 2022, 12, 2651-2660.	5. 5	18
461	Selective catalytic oxidation of ammonia to nitric oxide via chemical looping. Nature Communications, 2022, 13, 718.	5.8	18
462	A Hybrid Low Power Biopatch for Body Surface Potential Measurement. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 591-599.	3.9	17
463	Pressure-Induced Valence Change and Semiconductor–Metal Transition in PbCrO ₃ . Journal of Physical Chemistry C, 2014, 118, 23274-23278.	1.5	17
464	Adsorption of Cu(II) on humic acids derived from different organic materials. Journal of Integrative Agriculture, 2015, 14, 168-177.	1.7	17
465	Characteristics of GaN-based light emitting diodes with different thicknesses of buffer layer grown by HVPE and MOCVD. Journal Physics D: Applied Physics, 2017, 50, 075101.	1.3	17
466	Site Occupancy and VUV–UV–Vis Photoluminescence of the Lanthanide Ions in BaY ₂ Si ₃ O ₁₀ . Journal of Physical Chemistry C, 2018, 122, 7421-7431.	1.5	17
467	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	5.2	17
468	Tuning fermi level and band gap in Li ₄ Ti ₅ O ₁₂ by doping and vacancy for ultrafast Li ⁺ insertion/extraction. Journal of the American Ceramic Society, 2021, 104, 5934-5945.	1.9	17

#	Article	IF	CITATIONS
469	Hydrogen Passivation of Mâ \in "Nâ \in "C (M = Fe, Co) Catalysts for Storage Stability and ORR Activity Improvements (Adv. Mater. 38/2021). Advanced Materials, 2021, 33, 2170300.	11.1	17
470	Self-aware distributed deep learning framework for heterogeneous IoT edge devices. Future Generation Computer Systems, 2021, 125, 908-920.	4.9	17
471	UWB radio module design for wireless sensor networks. Analog Integrated Circuits and Signal Processing, 2007, 50, 47-57.	0.9	16
472	Spectral Properties and Energy Transfer between Ce ³⁺ and Yb ³⁺ in the Ca ₃ Sc ₂ Si ₃ O ₁₂ Host: Is It an Electron Transfer Mechanism?. Journal of Physical Chemistry A, 2016, 120, 5539-5548.	1.1	16
473	Unraveling the real active sites of an amorphous silica–alumina-supported nickel catalyst for highly efficient ethylene oligomerization. Catalysis Science and Technology, 2021, 11, 1510-1518.	2.1	16
474	Biomimetic caged platinum catalyst for hydrosilylation reaction with high site selectivity. Nature Communications, 2021, 12, 64.	5.8	16
475	An Evidence-Based Intelligent Method for Upper-Limb Motor Assessment via a VR Training System on Stroke Rehabilitation. IEEE Access, 2021, 9, 65871-65881.	2.6	16
476	An IoT-Based Life Cycle Assessment Platform of Wind Turbines. Sensors, 2021, 21, 1233.	2.1	16
477	Competitive Coordination of Chloride and Fluoride Anions Towards Trivalent Lanthanide Cations (La ³⁺ and Nd ³⁺) in Molten Salts. Chemistry - A European Journal, 2021, 27, 11721-11729.	1.7	16
478	Application of Xâ€Ray Absorption Spectroscopy in Electrocatalytic Water Splitting and CO ₂ Reduction. Small Science, 2021, 1, 2100023.	5.8	16
479	Tuning and understanding the electronic effect of Co–Mo–O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 21716-21722.	5.2	16
480	Global fresh food tracking service enabled by wide area wireless sensor network. , 2010, , .		15
481	An organic multilevel non-volatile memory device based on multiple independent switching modes. Organic Electronics, 2014, 15, 1983-1989.	1.4	15
482	$34.5~\mathrm{m}$ Underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation. , 2017, , .		15
483	Spaceâ€Chargeâ€Stabilized Ferroelectric Polarization in Selfâ€Oriented Croconic Acid Films. Advanced Functional Materials, 2018, 28, 1705463.	7.8	15
484	<i>Bacillus subtilis</i> causes dissolution of ceria nanoparticles at the nano–bio interface. Environmental Science: Nano, 2019, 6, 216-223.	2.2	15
485	An IoT-Based Anti-Counterfeiting System Using Visual Features on QR Code. IEEE Internet of Things Journal, 2021, 8, 6789-6799.	5.5	15
486	Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne. Nano Research, 2022, 15, 573-580.	5.8	15

#	Article	IF	CITATIONS
487	Enterprise-Oriented IoT Name Service for Agricultural Product Supply Chain Management. International Journal of Distributed Sensor Networks, 2015, 11, 308165.	1.3	15
488	A novel wearable ECG monitoring system based on active-cable and intelligent electrodes. , 2008, , .		14
489	Mobility Extraction for Nanotube TFTs. IEEE Electron Device Letters, 2011, 32, 913-915.	2.2	14
490	Modeling and analysis of Rayleigh fading channels using stochastic network calculus. , $2011, \ldots$		14
491	Characterization of dry biopotential electrodes. , 2013, 2013, 1478-81.		14
492	Nanosize effects assisted synthesis of the high pressure metastable phase in ZrO2. Nanoscale, 2016, 8, 2412-2417.	2.8	14
493	Large-signal modulation characteristics of a GaN-based micro-LED for Gbps visible-light communication. Applied Physics Express, 2018, 11, 044101.	1.1	14
494	Single level integrated packaging modules for high performance electronic systems. IEEE Transactions on Advanced Packaging, 2001, 24, 477-485.	1.7	13
495	Design and implementation of a 5GHz RF receiver front-end in LCP based system-on-package module with embedded chip technology. , 2003, , .		13
496	Thermal ageing of electrical conductivity in carbon nanotube/polyaniline composite films. Carbon, 2013, 59, 270-277.	5.4	13
497	Planar circular patch with elliptical slot antenna for ultrawideband communication applications. Microwave and Optical Technology Letters, 2015, 57, 325-328.	0.9	13
498	Uranium speciation in coal bottom ash investigated via X-ray absorption fine structure and X-ray photoelectron spectra. Journal of Environmental Sciences, 2018, 74, 88-94.	3.2	13
499	Experimental demonstration of non-line-of-sight visible light communication with different reflecting materials using a GaN-based micro-LED and modified IEEE 802.11ac. AIP Advances, 2018, 8, .	0.6	13
500	XAFS Studies of Feâ^'SiO ₂ Fischerâ€Tropsch Catalyst During Activation in CO, H ₂ , and Synthesis Gas. ChemCatChem, 2019, 11, 2206-2216.	1.8	13
501	Host Differential Sensitization toward Color/Lifetime‶uned Lanthanide Coordination Polymers for Optical Multiplexing. Angewandte Chemie, 2020, 132, 24018-24024.	1.6	13
502	Air atmospheric photocatalytic oxidation by ultrathin C,N-TiO ₂ nanosheets. Green Chemistry, 2021, 23, 1165-1170.	4.6	13
503	Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process. Angewandte Chemie, 2021, 133, 2401-2408.	1.6	13
504	lonic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Science China Materials, 2022, 65, 163-169.	3.5	13

#	Article	IF	CITATIONS
505	Enabling on-device classification of ECG with compressed learning for health IoT. Microelectronics Journal, 2021, 115, 105188.	1.1	13
506	Copper-linked 1T MoS2/Cu2O Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Chemical Research in Chinese Universities, 2020, 36, 1122-1127.	1.3	13
507	Intense Luminescence and Good Thermal Stability in a Mn ²⁺ -Activated Mg-Based Phosphor with Self-Reduction. Inorganic Chemistry, 2022, 61, 5495-5501.	1.9	13
508	Integrating single Co sites into crystalline covalent triazine frameworks for photoreduction of CO ₂ . Chemical Communications, 2022, 58, 8121-8124.	2.2	13
509	Essential Role of Ru–Anion Interaction in Ru-Based Ammonia Synthesis Catalysts. ACS Catalysis, 2022, 12, 7633-7642.	5.5	13
510	On-chip versus off-chip passives in multi-band radio design. , 0, , .		12
511	Mobile and wide area deployable sensor system for networked services. , 2009, , .		12
512	System design of full HD MVC decoding on mesh-based multicore NoCs. Microprocessors and Microsystems, 2011, 35, 217-229.	1.8	12
513	Effects of Synthesis Routes on the States and Catalytic Performance of Manganese Oxides Used for Diesel Soot Combustion. Catalysis Letters, 2014, 144, 1210-1218.	1.4	12
514	Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities. Thin Solid Films, 2017, 627, 77-81.	0.8	12
515	An End to End Recognition for License Plates Using Convolutional Neural Networks. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 177-188.	2.6	12
516	Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation. Nano Research, 2021, 14, 4601-4609.	5.8	12
517	Covalent interfacial coupling of vanadium nitride with nitrogen-rich carbon textile boosting its lithium storage performance as binder-free anode. Nano Research, 2021, 14, 4336-4346.	5.8	12
518	IECA: An In-Execution Configuration CNN Accelerator With 30.55 GOPS/mm² Area Efficiency. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4672-4685.	3.5	12
519	Energy detection receiver with TOA estimation enabling positioning in passive UWB-RFID system. , 2010, , .		11
520	Solution-Processable Nanotube/Polymer Composite for High-Performance TFTs. IEEE Electron Device Letters, 2011, 32, 1299-1301.	2.2	11
521	Electrical performance of inkjet printed flexible cable for ECG monitoring. , $2011, , .$		11
522	Life cycle assessment of printed antenna: Comparative analysis and environmental impacts evaluation. , $2011, \dots$		11

#	Article	IF	CITATIONS
523	Data driven quantitative trust model for the Internet of Agricultural Things. , 2014, , .		11
524	Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation, 2017, 24, 1000-1005.	1.0	11
525	Tin(IV) Sulfide Greatly Improves the Catalytic Performance of UiOâ€66 for Carbon Dioxide Cycloaddition. ChemCatChem, 2018, 10, 2945-2948.	1.8	11
526	Sputtered Cu-ZnO/l³-Al ₂ O ₃ Bifunctional Catalyst with Ultra-Low Cu Content Boosting Dimethyl Ether Steam Reforming and Inhibiting Side Reactions. Industrial & Engineering Chemistry Research, 2019, 58, 7085-7093.	1.8	11
527	Soft Exoskeleton Glove for Hand Assistance Based on Human-machine Interaction and Machine Learning. , 2020, , .		11
528	N-Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1529-1539.	3.2	11
529	Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction reaction. Nano Research, 2021, 14, 4714-4718.	5.8	11
530	Highly Efficient CO ₂ Electroreduction to Methanol through Atomically Dispersed Sn Coupled with Defective CuO Catalysts. Angewandte Chemie, 2021, 133, 22150-22158.	1.6	11
531	Studies of a Highly Active Cobalt Atomic Cluster Catalyst for Ammonia Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 1951-1960.	3.2	11
532	Spatial porosity design of Fe–N–C catalysts for high power density PEM fuel cells and detection of water saturation of the catalyst layer by a microwave method. Journal of Materials Chemistry A, 2022, 10, 7764-7772.	5.2	11
533	Efficient ambient ammonia synthesis by Lewis acid pair over cobalt single atom catalyst with suppressed proton reduction. Journal of Materials Chemistry A, 2022, 10, 8432-8439.	5.2	11
534	Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder. Applied Sciences (Switzerland), 2022, 12, 2351.	1.3	11
535	A Concurrent Multi-Band LNA for Multi-Standard Radios. , 0, , .		10
536	CMOS UWB IR Non-Coherent Receiver for RF-ID Applications. , 2006, , .		10
537	Development and experimental verification of analytical models for printable interdigital capacitor sensors on paperboard., 2009,,.		10
538	A passive UHF-RFID tag with inkjet-printed electrochromic paper display. , 2013, , .		10
539	Biofeedback neuromuscular electrical stimulation front-end for dysphagia treatment. , 2014, , .		10
540	Phase transition of solid bismuth under high pressure. Chinese Physics B, 2016, 25, 108103.	0.7	10

#	Article	IF	CITATIONS
541	A UWB-Based Sensor-to-Time Transmitter for RF-Powered Sensing Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 503-507.	2.2	10
542	CO ₂ /Water Emulsions Stabilized by Partially Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17613-17619.	4.0	10
543	Smart energy efficient gateway for Internet of mobile things. , 2017, , .		10
544	Temperature-dependent electronic properties of inorganic-organic hybrid halide perovskite (CH3NH3PbBr3) single crystal. Applied Physics Letters, 2017, 111, .	1.5	10
545	High-gain broadband organolead trihalide perovskite photodetector based on a bipolar heterojunction phototransistor. Organic Electronics, 2018, 57, 7-13.	1.4	10
546	Local Chemical Strain in PtFe Alloy Nanoparticles. Inorganic Chemistry, 2018, 57, 10494-10497.	1.9	10
547	New insights into the chemical forms of extremely high methylmercury in songbird feathers from a contaminated site. Chemosphere, 2019, 225, 803-809.	4.2	10
548	[(C 8 H 17) 4 N] 4 [SiW 12 O 40] (TASiWâ€12)â€Modified SnO 2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000406.	3.1	10
549	Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO 2 Electroreduction to Ethylene. Angewandte Chemie, 2021, 133, 16823-16828.	1.6	10
550	A Design of Smart Unmanned Vending Machine for New Retail Based on Binocular Camera and Machine Vision. IEEE Consumer Electronics Magazine, 2022, 11, 21-31.	2.3	10
551	Ultrathin Hematite Photoanode with Gradient Ti Doping. Research, 2020, 2020, 5473217.	2.8	10
552	Backpropagation With Sparsity Regularization for Spiking Neural Network Learning. Frontiers in Neuroscience, 2022, 16, 760298.	1.4	10
553	Light-Induced Structural Dynamic Evolution of Pt Single Atoms for Highly Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 26752-26765.	4.0	10
554	System-on-package: a broad perspective from system design to technology development. Microelectronics Reliability, 2003, 43, 1339-1348.	0.9	9
555	A guaranteed-throughput switch for network-on-chip. , 0, , .		9
556	A study on the implementation of 2-D mesh-based networks-on-chip in the nanometre regime. The Integration VLSI Journal, 2004, 38, 3-17.	1.3	9
557	Wireless sensor networks for logistics and retail. , 2009, , .		9
558	Impulse UWB energy detection receiver with energy offset synchronization scheme. , 2009, , .		9

#	Article	IF	Citations
559	Design and demonstration of passive UWB RFIDs: Chipless versus chip solutions. , 2012, , .		9
560	An adaptive 16/64 kHz, 9-bit SAR ADC with peak-aligned sampling for neural spike recording. , 2014, , .		9
561	Transportation and transformation of mercury in a calcine profile in the Wanshan Mercury Mine, SW China. Environmental Pollution, 2016, 219, 976-981.	3.7	9
562	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PSâ€∢i>bà€P4VP Micelles. Particle and Particle Systems Characterization, 2018, 35, 1700404.	1.2	9
563	A 3D Tiled Low Power Accelerator for Convolutional Neural Network. , 2018, , .		9
564	Ion Exchange of One-Pot Synthesized Cu-SAPO-44 with NH4NO3 to Promote Cu Dispersion and Activity for Selective Catalytic Reduction of NOx with NH3. Catalysts, 2019, 9, 882.	1.6	9
565	In Vitro Assessment of Arsenic Release and Transformation from As(V)-Sorbed Goethite and Jarosite: The Influence of Human Gut Microbiota. Environmental Science & Environmental Science & 2020, 54, 4432-4442.	4.6	9
566	Liquidâ€Metalâ€Induced Memristor Behavior in Polymer Insulators. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000050.	1.2	9
567	NiFe saponite as a new anode material for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6539-6545.	5.2	9
568	Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. Journal of Hazardous Materials, 2022, 424, 127394.	6.5	9
569	Efficient Role of Nanosheet-Like Pr ₂ O ₃ Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO ₂ Hydrogenation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2768-2781.	4.0	9
570	Influence of Rapid Thermal Annealing on Structural and Interfacial Properties of Lead-Zirconate-Titanate Thin Films Prepared by Excimer Laser Deposition. Chinese Physics Letters, 1994, 11, 518-521.	1.3	8
571	Total dose radiation effects of Pt/PZT/Pt ferroelectric capacitors fabricated by PLD method. Semiconductor Science and Technology, 1999, 14, 836-839.	1.0	8
572	Chip-package co-design of common emitter LNA in system-on-package with on-chip versus off-chip passive component analysis. , 2003, , .		8
573	Process development and reliability for system-in-a-package using liquid crystal polymer substrate. , 0,		8
574	On Gate Capacitance of Nanotube Networks. IEEE Electron Device Letters, 2011, 32, 641-643.	2.2	8
575	Metal–Organic Framework for Emulsifying Carbon Dioxide and Water. Angewandte Chemie, 2016, 128, 11544-11548.	1.6	8
576	Interactive UHF/UWB RFID tag for mass customization. Information Systems Frontiers, 2017, 19, 1177-1190.	4.1	8

#	Article	IF	CITATIONS
577	Time-resolved XAFS measurement using quick-scanning techniques at BSRF. Journal of Synchrotron Radiation, 2017, 24, 674-678.	1.0	8
578	Effective Zinc Adsorption Driven by Electrochemical Redox Reactions of Birnessite Nanosheets Generated by Solar Photochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 13907-13914.	3.2	8
579	The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO. Sustainability, 2019, 11, 49.	1.6	8
580	Base-Reconfigurable Segmented Logarithmic Quantization and Hardware Design for Deep Neural Networks. Journal of Signal Processing Systems, 2020, 92, 1263-1276.	1.4	8
581	Creation of CuO _x /ZSM-5 zeolite complex: healing defect sites and boosting acidic stability and catalytic activity. Catalysis Science and Technology, 2020, 10, 4981-4989.	2.1	8
582	A rational design of an efficient counter electrode with the Co/Co ₁ P ₁ N ₃ atomic interface for promoting catalytic performance. Materials Chemistry Frontiers, 2021, 5, 3085-3092.	3.2	8
583	Using IoT Technologies to Resolve the Food Safety Problem – An Analysis Based on Chinese Food Standards. Lecture Notes in Computer Science, 2012, , 380-392.	1.0	8
584	Influence of rapid thermal annealing on pyrochlore/perovskite phase formation in laser ablated Pb(Zr,Ti)O3thin films. Integrated Ferroelectrics, 1995, 9, 69-74.	0.3	7
585	Chip-package co-design of a concurrent LNA in system-on-package for multi-band radio applications. , 0,		7
586	System-on-flexible-substrates: electronics for future smart-intelligent world., 2006,,.		7
587	Chip-Package and Antenna Co-Design of a Tunable UWB Transmitter in System-on-Package with On-Chip versus Off-Chip Passives. , 2006, , .		7
588	Design of a Digital Baseband Processor for UWB Transceiver on RFID Tag., 2007,,.		7
589	Minimal-Power, Delay-Balanced Smart Repeaters for Global Interconnects in the Nanometer Regime. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16, 589-593.	2.1	7
590	Modeling of On-Chip Bus Switching Current and Its Impact on Noise in Power Supply Grid. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16, 766-770.	2.1	7
591	A $1.0\mathrm{V}$ 78 & amp; #x03BC; W reconfigurable ASIC embedded in an intelligent electrode for continuous remote ECG applications. , 2009, 2009, 2316-9.		7
592	Power integrity optimization of 3D chips stacked through TSVs. , 2009, , .		7
593	Insight into quantitative environmental emission analysis of printed circuit board. , 2011, , .		7
594	A 90nm CMOS UHF/UWB asymmetric transceiver for RFID readers. , 2011, , .		7

#	Article	IF	Citations
595	Peak-to-Peak Ground Noise on a Power Distribution TSV Pair as a Function of Rise Time in 3-D Stack of Dies Interconnected Through TSVs. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1, 196-207.	1.4	7
596	Evaluating Sustainability, Environmental Assessment and Toxic Emissions during Manufacturing Process of RFID Based Systems. , $2011, \ldots$		7
597	A high-resolution Time-to-Digital Converter based on parallel delay elements. , 2012, , .		7
598	Enterprise-Oriented IoT Name Service for Agriculture Product Supply Chain Management. , 2014, , .		7
599	RF Interconnections for Paper Electronics. IEEE Microwave and Wireless Components Letters, 2015, 25, 684-686.	2.0	7
600	Optimal azimuthal orientation for Si(111) double-crystal monochromators to achieve the least amount of glitches in the hard X-ray region. Journal of Synchrotron Radiation, 2015, 22, 1147-1150.	1.0	7
601	An Active Tag Using Carrier Recovery Circuit for EPC Gen2 Passive UHF RFID Systems. IEEE Transactions on Industrial Electronics, 2018, 65, 8925-8935.	5.2	7
602	IoT Platform for Real-Time Multichannel ECG Monitoring and Classification with Neural Networks. Lecture Notes in Business Information Processing, 2018, , 181-191.	0.8	7
603	Optimized Near-Zero Quantization Method for Flexible Memristor Based Neural Network. IEEE Access, 2018, 6, 29320-29331.	2.6	7
604	Optimization of the Cell Structure for Radiation-Hardened Power MOSFETs. Electronics (Switzerland), 2019, 8, 598.	1.8	7
605	Pressure induced transformation and subsequent amorphization of monoclinic Nb ₂ O ₅ and its effect on optical properties. Journal of Physics Condensed Matter, 2019, 31, 105401.	0.7	7
606	A Metastable Crystalline Phase in Twoâ€Dimensional Metallic Oxide Nanoplates. Angewandte Chemie, 2019, 131, 2077-2081.	1.6	7
607	Boosting Efficient Ammonia Synthesis over Atomically Dispersed Co-Based Catalyst via the Modulation of Geometric and Electronic Structures. CCS Chemistry, 2022, 4, 1758-1769.	4.6	7
608	A Memory-Efficient CNN Accelerator Using Segmented Logarithmic Quantization and Multi-Cluster Architecture. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2142-2146.	2.2	7
609	An Innovative Semi-UWB Passive Transponder for Wireless Sensor and RFID Applications. , 2006, , .		7
610	Edge-Based Collaborative Training System for Artificial Intelligence-of-Things. IEEE Transactions on Industrial Informatics, 2022, 18, 7162-7173.	7.2	7
611	Encapsulating atomic molybdenum into hierarchical nitrogen-doped carbon nanoboxes for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 620, 67-76.	5.0	7
612	Characterization of Pb(Zr,Ti)O3 thin films on SOI prepared by excimer laser deposition. Integrated Ferroelectrics, 1995, 9, 63-68.	0.3	6

#	Article	IF	CITATIONS
613	(111)-Oriented BaTiO3 thin films hydrothermally formed on TiO2/Si substrate. Integrated Ferroelectrics, 1996, 12, 233-239.	0.3	6
614	Drift and deformation of the hysteresis curve in thin film ferroelectric capacitors with conductance. Journal Physics D: Applied Physics, 1996, 29, 2020-2024.	1.3	6
615	BaRuO ₃ thin film electrode for ferroelectric lead zirconate titanate capacitors. Journal of Materials Research, 1999, 14, 3833-3836.	1.2	6
616	System-on-chip or system-on-package: can we make an accurate decision on system implementation in an early design phase?. , 0, , .		6
617	System level interconnect design for network-on-chip using interconnect IPs., 2003,,.		6
618	A DC-13GHz LNA for UWB RFID applications. , 0, , .		6
619	Baseband design for passive semi-UWB wireless sensor and identification systems. , 2007, , .		6
620	Traffic Splitting with Network Calculus for Mesh Sensor Networks. , 2007, , .		6
621	A system-on-chip and paper-based inkjet printed electrodes for a hybrid wearable bio-sensing system. , 2012, 2012, 5026-9.		6
622	Study on Glass-Epoxy-Based Low-Cost and Compact Tip-Truncated Triangular Printed Antenna. International Journal of Antennas and Propagation, 2012, 2012, 1-8.	0.7	6
623	Unconventional Luminescent Centers in Metastable Phases Created by Topochemical Reduction Reactions. Angewandte Chemie, 2016, 128, 5051-5055.	1.6	6
624	Efficient hydrogenation performance improvement of MoP and Ni ₂ P catalysts by adjusting the electron distribution around Mo and Ni atoms. RSC Advances, 2016, 6, 65081-65088.	1.7	6
625	A multiplication reduction technique with near-zero approximation for embedded learning in IoT devices. , 2016, , .		6
626	Innenrücktitelbild: Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 7107-7107.	1.6	6
627	Discerning lattice and electronic structures in under- and over-doped multiferroic Aurivillius films. Journal of Applied Physics, 2017, 121, 114107.	1.1	6
628	A Mobile-Based High Sensitivity On-Field Organophosphorus Compounds Detecting System for loT-Based Food Safety Tracking. Journal of Sensors, 2017, 2017, 1-13.	0.6	6
629	Long read range Classâ€3 UHF RFID system based on harmonic backscattering. Electronics Letters, 2018, 54, 1262-1264.	0.5	6
630	Metal Ionic Liquids Produce Metalâ€Dispersed Carbonâ€Nitrogen Networks for Efficient CO 2 Electroreduction. ChemCatChem, 2019, 11, 3166-3170.	1.8	6

#	Article	IF	CITATIONS
631	Self-assembled non-volatile micro memory arrays of molecular ferroelectrics. Journal of Materials Chemistry C, 2020, 8, 16742-16748.	2.7	6
632	Coordinately unsaturated O _{2c} â€"Ti _{5c} â€"O _{2c} sites promote the reactivity of Pt/TiO ₂ catalysts in the solvent-free oxidation of <i>n</i> octanol. Catalysis Science and Technology, 2021, 11, 4898-4910.	2.1	6
633	Solvent coordination engineering for high-quality hybrid organic-inorganic perovskite films. Journal of Materials Science, 2021, 56, 9903-9913.	1.7	6
634	A Memristor Model with Concise Window Function for Spiking Brain-Inspired Computation. , 2021, , .		6
635	Optimization of the Coupling Coefficient of the Inductive Link for Wireless Power Transfer to Biomedical Implants. International Journal of Antennas and Propagation, 2022, 2022, 1-12.	0.7	6
636	Interfacial Feâ€Oâ€Niâ€Oâ€Fe Bonding Regulates the Active Ni Sites of Niâ€MOFs via Iron Doping and Decorating with FeOOH for Superâ€Efficient Oxygen Evolution. Angewandte Chemie, 0, , .	21.6	6
637	Spectroscopic investigations and density functional theory calculations reveal differences in retention mechanisms of lead and copper on chemically-modified phytolith-rich biochars. Chemosphere, 2022, 301, 134590.	4.2	6
638	An IoT-based intelligent irrigation system with data fusion and a self-powered wide-area network. Journal of Industrial Information Integration, 2022, 29, 100367.	4.3	6
639	BaRuO3 thin films prepared by pulsed laser deposition. Materials Letters, 1995, 25, 175-178.	1.3	5
640	RF robustness enhancement through statistical analysis of chip package co-design. , 0, , .		5
641	Power Management and Clock Generator for a Novel Passive UWB Tag. , 2007, , .		5
642	Design and analysis of efficient and compact antenna for paper based UHF RFID tags. , 2008, , .		5
643	Two-Layered Wireless Sensor Networks for Warehouses and Supermarkets., 2009,,.		5
644	Intelligent electrode design for long-term ECG monitoring at home: Prototype design using FPAA and FPGA. , 2009, , .		5
645	Mobile wireless sensor system for tracking and environmental supervision. , 2010, , .		5
646	Fully integrated 1.2 pJ/p UWB transmitter with on-chip antenna for wireless identification. , 2010, , .		5
647	Design of a self-organized Intelligent Electrode for synchronous measurement of multiple bio-signals in a wearable healthcare monitoring system. , 2010 , , .		5
648	Performance Analysis of Flow-Based Traffic Splitting Strategy on Cluster-Mesh Sensor Networks. International Journal of Distributed Sensor Networks, 2012, 8, 232937.	1.3	5

#	Article	IF	Citations
649	A multi-parameter bio-electric ASIC sensor with integrated 2-wire data transmission protocol for wearable healthcare system. , 2012 , , .		5
650	The structure of Mn-doped tris(8-hydroxyquinoline)gallium by extended x-ray absorption fine structure spectroscopy and first principles calculations. Journal of Applied Physics, 2012, 112, 113519.	1.1	5
651	Evaluation of non-contact flexible electrodes connected with a customized IC-steps towards a fully integrated ECG sensor., 2013,,.		5
652	Surface-binding-mediated growth of monodisperse cobalt-doped ceria nanocrystals. RSC Advances, 2014, 4, 16033.	1.7	5
653	Information and communication system technology's impacts on personalized and pervasive healthcare: A technological survey. , $2014, \ldots$		5
654	A Low-Power Arithmetic Element for Multi-Base Logarithmic Computation on Deep Neural Networks. , 2018, , .		5
655	High Pressure Induced in Situ Solid-State Phase Transformation of Nonepitaxial Grown Metal@Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 6544-6549.	2.1	5
656	A Credible Food Traceability System Based on Domain Name System Security Extensions. International Journal of Online Engineering, 2018, 14, 111.	0.5	5
657	General Water-Induced Self-Exfoliation Strategy for the Ultrafast and Large-Scale Synthesis of Metal Hydroxide Nanosheets. Journal of Physical Chemistry Letters, 2019, 10, 6695-6700.	2.1	5
658	Energy-Aware Workload Allocation for Distributed Deep Neural Networks in Edge-Cloud Continuum. , 2019, , .		5
659	A novel Fe/N/C electrocatalyst prepared from a carbon-supported iron(ii) complex of macrocyclic ligands for oxygen reduction reaction. RSC Advances, 2021, 11, 8437-8443.	1.7	5
660	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie - International Edition, 2021, 60, 10056-10063.	7.2	5
661	Optimising bandwidth over deep sub-micron interconnect. , 0, , .		5
662	Fast and Robust Spectrum Sensing for Cognitive Radio Enabled IoT. IEEE Access, 2021, 9, 165996-166007.	2.6	5
663	High-content atomically distributed W(<scp>v</scp> , <scp>vi</scp>) on FeCo layered double hydroxide with high oxygen evolution reaction activity. Chemical Communications, 2022, 58, 7678-7681.	2.2	5
664	Combating digital noise in high speed ULSI circuits using binary BCH encoding., 0,,.		4
665	Phase evolution in boron nitride thin films prepared by a dc-gasdischarge assisted pulsed laser deposition. Thin Solid Films, 1997, 293, 17-21.	0.8	4
666	Ferroelectric characteristics of and capacitors in a radiation environment. Journal of Physics Condensed Matter, 1998, 10, 7493-7499.	0.7	4

#	Article	IF	Citations
667	The structural and electric behavior of SrBi2Ta2O9 ferroelectric thin films with H+ implantation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 251, 336-339.	0.9	4
668	Hierarchical modeling of sigma delta modulators for noise coupling analysis. , 0, , .		4
669	Modeling and Simulation of Spiral Inductors in Wafer Level Packaged RF/Wireless Chips. Analog Integrated Circuits and Signal Processing, 2003, 34, 39-47.	0.9	4
670	$ \hbox{ $\sf LWB$ Radio Module Design for Wireless Intelligent Systems-From Specification to Implementation.,} \\ 2005, , . $		4
671	Minimal-power, delay-balanced smart repeaters for interconnects in the nanometer regime. , 2006, , .		4
672	Design and Implementation of a High Efficient Power Converter for Self-Powered UHF RFID Applications. , 2006, , .		4
673	Low power tunable CMOS I-UWB transmitter design. , 2007, , .		4
674	A current shaping technique to lower phase noise in LC oscillators. , 2008, , .		4
675	High frequency characterization and modelling of inkjet printed interconnects on flexible substrate for low-cost RFID applications. , 2008, , .		4
676	ARCHER: an automated RF-IC Rx front-end circuit design tool. Analog Integrated Circuits and Signal Processing, 2009, 58, 255-270.	0.9	4
677	A digital back-end of energy detection UWB impulse radio receiver. , 2009, , .		4
678	Analysis, design and development of novel, low profile 2.487 GHz microstrip antenna. , 2010, , .		4
679	Modeling of peak-to-peak switching noise along a vertical chain of power distribution TSV pairs in a 3D stack of ICs interconnected through TSVs. , 2010, , .		4
680	A reconfigurable chipless RFID tag based on sympathetic oscillation for liquid-bearing applications. , 2011, , .		4
681	Exploration and performance evaluation of a compressed sensing based IR-UWB receiver., 2013,,.		4
682	A 35 pJ/pulse injection-locking based UWB transmitter for wirelessly-powered RFID tags. , 2013, , .		4
683	Low Complexity Burst Packet Detection for Wireless-Powered UWB RFID Systems. , 2015, , .		4
684	Electrochemistry: Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni-Co Double Hydroxides Nanocages (Adv. Energy Mater. 10/2015). Advanced Energy Materials, 2015, 5, .	10.2	4

#	Article	IF	CITATIONS
685	A nanotube/polymer composite biosensing thin-film transistor platform for C-reactive protein detection. , 2015, , .		4
686	A low-power coarse-fine time-to-digital converter in 65nm CMOS., 2015,,.		4
687	Design and simulation of a standing wave oscillator based PLL. Frontiers of Information Technology and Electronic Engineering, 2016, 17, 258-264.	1.5	4
688	Design and implementation of multi-mode routers for large-scale inter-core networks. The Integration VLSI Journal, $2016, 53, 1-13$.	1.3	4
689	Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasses. Physical Review B, 2018, 97, .	1.1	4
690	The Role of Alkali Metal in αâ€MnO ₂ Catalyzed Ammoniaâ€Selective Catalysis. Angewandte Chemie, 2019, 131, 6417-6422.	1.6	4
691	Rapid-Heating-Triggered <i>in Situ</i> Solid-State Transformation of Amorphous TiO ₂ Nanotubes into Well-Defined Anatase Nanocrystals. Crystal Growth and Design, 2019, 19, 1086-1094.	1.4	4
692	Unraveling the Low-Temperature Redox Behavior of Ultrathin Ceria Nanosheets with Exposed {110} Facets by in Situ XAFS/DRIFTS Utilizing CO as Molecule Probe. Journal of Physical Chemistry C, 2019, 123, 322-333.	1.5	4
693	Design Framework for SRAM-Based Computing-In-Memory Edge CNN Accelerators. , 2021, , .		4
694	Synergy of Oxygen-Deficient LaFeO _{3â~δ} and N-Doped Reduced Graphene Oxide in Oxygen Reduction Reaction in Alkaline Solutions. ACS Applied Energy Materials, 2021, 4, 8745-8754.	2.5	4
695	Anchoring Ionic Liquid in Copper Electrocatalyst for Improving CO ₂ Conversion to Ethylene. Angewandte Chemie, 2022, 134, .	1.6	4
696	Modulating the Electronic Metalâ€Support Interactions in Singleâ€Atom Pt ₁ â^'CuO Catalyst for Boosting Acetone Oxidation. Angewandte Chemie, 2022, 134, .	1.6	4
697	Surface Ligand Tuning of Coordination Geometry and Pb 6s ² Electronic Pair Stereochemical Activity in MAPbBr ₃ Perovskite Nanoparticles: A Joint Experimental and Theoretical Insight. Journal of Physical Chemistry C, 2022, 126, 7500-7509.	1.5	4
698	Pulsed laser deposition preparation and properties of SrBi2Ta2O9 thin films. Thin Solid Films, 1997, 305, 48-51.	0.8	3
699	Pulsed laser deposition of pyroelectric pclt thin films using a ceramic/metal target. Integrated Ferroelectrics, 1998, 20, 73-78.	0.3	3
700	Global interconnect design for high speed ULSI and system-on-package., 0,,.		3
701	Switch Design and Implementation for Network-on-Chip. , 2005, , .		3
702	Concurrent Chip Package Design for Global Clock Distribution Network Using Standing Wave Approach. , 0, , .		3

#	Article	IF	Citations
703	A Novel BiST and Calibration Technique for CMOS Down-Converters. , 2008, , .		3
704	A novel acceleration data compression scheme for wireless sensor network application in fresh food tracking system. , 2009, , .		3
705	A mixed-signal timing circuit in 90nm CMOS for energy detection IR-UWB receivers. , 2010, , .		3
706	Linearly-tapered RFID tag antenna with 40% material reduction for ultra-low-cost applications. , 2011, , .		3
707	Bio-chip ASIC and printed flexible cable on paper substrate for wearable healthcare applications. , 2011, , .		3
708	Local structure of Se nanotube investigated by X-ray absorption fine structure spectroscopy. Rendiconti Lincei, 2011, 22, 17-24.	1.0	3
709	Configurable inkâ€jetâ€printed RFID tag on paper substrate for low cost and green applications. Microwave and Optical Technology Letters, 2011, 53, 2781-2786.	0.9	3
710	Influence of Carbon Nanotubes on Thermal Stability of Water-Dispersible Nanofibrillar Polyaniline/Nanotube Composite. Materials, 2012, 5, 327-335.	1.3	3
711	Software defined radio IR-UWB positioning platform for RFID and WSN application. , 2012, , .		3
712	Electrical and humidity-sensing characterization of inkjet-printed multi-walled carbon nanotubes for smart packaging, , 2013, , .		3
713	RFID antenna humidity sensor co-design for USN applications. IEICE Electronics Express, 2013, 10, 20130003-20130003.	0.3	3
714	A wirelessly-powered UWB sensor tag with time-domain sensor interface. , 2014, , .		3
715	A 101.4 GOPS/W Reconfigurable and Scalable Control-Centric Embedded Processor for Domain-Specific Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 2245-2256.	3.5	3
716	Photocatalysts: Layeredâ€Doubleâ€Hydroxide Nanosheets as Efficient Visibleâ€Lightâ€Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). Advanced Materials, 2017, 29, .	11.1	3
717	Ionâ€Exchangeable Microporous Polyoxometalate Compounds with Offâ€Center Dopants Exhibiting Unconventional Luminescence. Chemistry - A European Journal, 2018, 24, 9976-9982.	1.7	3
718	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for Highâ€Performance Electrocatalysis. ChemCatChem, 2018, 10, 1241-1247.	1.8	3
719	An ASIC Design of Multi-Electrode Digital Basket Catheter Systems with Reconfigurable Compressed Sampling. , 2018, , .		3
720	An 2D Polymer Used As Ingredient of Fe/N/C Composite Towards Oxygen Reduction Catalyst In Acidic Medium ChemistrySelect, 2019, 4, 884-891.	0.7	3

#	Article	IF	CITATIONS
721	A 180 nm-CMOS Asymmetric UWB-RFID Tag with Real-time Remote-monitored ECG-sensing. , 2015, , .		3
722	The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Tradeâ€Off in Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	3
723	A Hybrid-Mode On-Chip Router for the Large-Scale FPGA-Based Neuromorphic Platform. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1990-2001.	3.5	3
724	Pulsed laser deposition of PZT/BaRuO ₃ BI-Layered films on silicon substrate. Ferroelectrics, 1997, 195, 199-202.	0.3	2
725	Title is missing!. Journal of Materials Science Letters, 1997, 16, 1856-1858.	0.5	2
726	Pulsed laser ablation synthesis and ferroelectric properties of SrBi2Ta2O9 thin films. Integrated Ferroelectrics, 1998, 20, 79-86.	0.3	2
727	Preparation and properties of PGO thin films by PLD. Ferroelectrics, 1999, 225, 245-252.	0.3	2
728	Noise margin constraints for interconnectivity in deep submicron low power and mixed-signal VLSI circuits. , 1999, , .		2
729	Crosstalk immune interconnect driver design. , 0, , .		2
730	Analysis of lossy packaging parasitics for common emitter LNA in system-on-package. , 0, , .		2
731	Embedded smart systems for intelligent paper and packaging. , 0, , .		2
732	Broadband CMOS LNAs for IR-UWB receiver. , 2005, , .		2
733	An innovative receiver architecture for autonomous detection of ultra-wideband signals. , 0, , .		2
734	Deterministic Worst-Case Performance Analysis for Wireless Sensor Networks., 2008,,.		2
735	An Active-Cable Connected ECG Monitoring System for Ubiquitous Healthcare. , 2008, , .		2
736	A 5Mgate/414mW networked media SoC in 0.13um CMOS with 720p multi-standard video decoding. , 2009, , .		2
737	A 77 nW bioamplifier with a tunable bandwidth for neural recording systems. , 2010, , .		2
738	A fast and accurate phase noise measurement of free running oscillators using a single spectrum analyzer. , $2010, , .$		2

#	Article	IF	CITATIONS
739	A Low Delay Multiple Reader Passive RFID System Using Orthogonal TH-PPM IR-UWB. , 2010, , .		2
740	Interactive packaging solutions based on RFID technology and Controlled Delamination Material. , 2010, , .		2
741	System-level exploration of mesh-based NoC architectures for multimedia applications. , 2010, , .		2
742	Stochastic coverage in event-driven sensor networks. , 2011, , .		2
743	A flexible back-end with optimum threshold estimation for OOK based energy detection IR-UWB receivers. , $2011, $, .		2
744	A Software Defined Radio platform for passive UWB-RFID localization., 2012,,.		2
745	Quantifying the environmental footprint of rigid substrate printed antenna. , 2012, , .		2
746	Miniaturization of UWB Antennas and its Influence on Antenna-Transceiver Performance in Impulse-UWB Communication. Wireless Personal Communications, 2013, 71, 2913-2935.	1.8	2
747	A hierarchical reconfigurable micro-coded multi-core processor for IoT applications. , 2014, , .		2
748	High-Throughput and High-Efficiency Multiple Access Scheme for IEEE802.15.4 Based RFID Sensing. , 2015, , .		2
749	Latency-optimized stochastic LDPC decoder for high-throughput applications. , 2015, , .		2
750	Investigation on the trioctylphosphine oxide-based super-concentrated HCl system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 288-294.	2.0	2
751	Effects of Activation Atmospheres on Structure and Activity of Mo-based Catalyst for Synthesis of Higher Alcohols. Chinese Journal of Chemical Physics, 2016, 29, 467-473.	0.6	2
752	<i>Al-BL</i> 1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm. Journal of Synchrotron Radiation, 2017, 24, 367-373.	1.0	2
7 53	Designing bio-inspired autonomous error-tolerant massively parallel computing architectures. , 2017, , .		2
754	Optimal design of antenna array for multiple targets microwave power transmission with precise power division ratio control. IET Microwaves, Antennas and Propagation, 2018, 12, 622-626.	0.7	2
755	A Wireless Powered Implantable and Flexible Neural Recording and Stimulating System Based on NFC Protocol. , 2018, , .		2
756	Underwater Wireless Optical Communication and Underwater Solid-State Lighting Based on RGB Laser Diodes Mixed White-Light. , $2018, , .$		2

#	Article	IF	CITATIONS
757	A Flexible Artificial Synapse for Neuromorphic System. , 2018, , .		2
758	Universal and Convenient Optimization Strategies for Three-Terminal Memristors. IEEE Access, 2018, 6, 48815-48826.	2.6	2
759	A Design of Autonomous Error-Tolerant Architectures for Massively Parallel Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2143-2154.	2.1	2
760	Towards Workload-Balanced, Live Deep Learning Analytics for Confidentiality-Aware IoT Medical Platforms. , 2019, , .		2
761	Electrocatalysis: Wellâ€Dispersed Nickel―and Zincâ€Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction (Adv. Mater. 16/2019). Advanced Materials, 2019, 31, 1970113.	11.1	2
762	Design of Mirror Therapy System Base on Multi-Channel Surface-Electromyography Signal Pattern Recognition and Mobile Augmented Reality. Electronics (Switzerland), 2020, 9, 2142.	1.8	2
763	A FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network. , 2020, , .		2
764	Electrocatalysis: Kinetic Enhancement of Sulfur Cathodes by Nâ€Doped Porous Graphitic Carbon with Bound VN Nanocrystals (Small 48/2020). Small, 2020, 16, 2070261.	5.2	2
765	Electric Field and Transmitting Power Analysis of Segmented and Unsegmented Loop Antennas for Transcutaneous Power Transfer. IEEE Transactions on Antennas and Propagation, 2021, 69, 3485-3492.	3.1	2
766	Peroxo Species Formed in the Bulk of Silicate Cathodes. Angewandte Chemie, 2021, 133, 10144-10151.	1.6	2
767	Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks. , 2021, , .		2
768	DisSAGD: A Distributed Parameter Update Scheme Based on Variance Reduction. Sensors, 2021, 21, 5124.	2.1	2
769	Construction of highly durable electrocatalysts by pore confinement and anchoring effect for the oxygen reduction reaction. New Journal of Chemistry, 0, , .	1.4	2
770	Field-ionization source induced phase transition from hBN to cBN during pulsed laser deposition. Physica Status Solidi A, 1996, 157, 11-18.	1.7	1
771	Influence of Annealing on Crystal Structure and Properties of SrBi ₂ Ta ₂ O ₉ Thin Films Prepared by Pulse Laser Deposition. Chinese Physics Letters, 1996, 13, 934-936.	1.3	1
772	Pulsed laser deposition and characterization of ferroelectric Pb(Zr, Ti)O 3 thin films on silicon-on-insulator substrates. Acta Physica Sinica (overseas Edition), 1996, 5, 384-390.	0.1	1
773	Proposed mechanism for the improvements of PZT thin films deposited by direct-current glow discharge assisted laser ablation. Ferroelectrics, 1997, 195, 203-206.	0.3	1
774	Pulsed excimer laser deposition of Pb(Zr,Ti)O $<$ sub $>3<$ /sub $>$ thin films on simox substrates. Ferroelectrics, 1997, 195, 207-210.	0.3	1

#	Article	IF	CITATIONS
775	Electrical characteristics of SrBi2Ta2O9 thin films prepared by pulsed laser deposition. Materials Letters, 1997, 30, 245-248.	1.3	1
776	Structural and electrical properties of epitaxial SBT thin films by PLD. Ferroelectrics, 1999, 225, 221-228.	0.3	1
777	Single level integrated packaging modules for high performance electronic systems. , 0, , .		1
778	Mixed signal system design: a system integration and packaging course developed for chip and system designers. , 0, , .		1
779	Chip-package co-design for high-speed transmitter in serial links application. , 2003, , .		1
780	Design and implementation of system-on-package for radio and mixed-signal applications. , 0, , .		1
781	Global routing for multicast-supporting TDM network-on-chip. , 0, , .		1
782	Chip-package co-design for high performance and reliability off-chip communications. , 0, , .		1
783	Robustness enhancement through chip-package co-design for high-speed electronics. Microelectronics Journal, 2005, 36, 846-855.	1.1	1
784	A 0.18 μm CMOS Ultra-Wideband Low-Noise Amplifier with High IIP3., 2005, , .		1
785	Case Study of Interconnect Analysis for Standing Wave Oscillator Design. , 0, , .		1
786	Sizing of MOS device in LC-tank oscillators. , 2007, , .		1
787	An ASIC-design-based configurable SOC architecture for networked media. , 2008, , .		1
788	Impulse UWB antenna size reduction due to transmitter-antenna co-design. , 2008, , .		1
789	Antenna Miniaturization Influence on the Performance of Impulse Radio UWB system., 2008,,.		1
790	Remotely UHF-Powered Ultra Wideband RFID for Ubiquitous Wireless Identification and Sensing., 0,,.		1
791	Mismatch aware power and area optimization of successive-approximation ADCs., 2010,,.		1
792	Fast transient simulation algorithm for a 3D power distribution bus. , 2010, , .		1

#	Article	IF	CITATIONS
793	Design of a printable multi-functional sensor for remote monitoring., 2011,,.		1
794	A polar transmitter architecture with digital switching amplifier for UHF RFID applications. , 2011, , .		1
795	Flicker noise conversion in CMOS LC oscillators: capacitance modulation dominance and core device sizing. Analog Integrated Circuits and Signal Processing, 2011, 68, 145-154.	0.9	1
796	Co-design of flip chip interconnection with anisotropic conductive adhesives and inkjet-printed circuits for paper-based RFID tags. , 2011 , , .		1
797	Analog front-end RX design for UWB impulse radio in 90nm CMOS. , 2011, , .		1
798	Content-extraction-based compression of acceleration data for mobile wireless sensors. , 2012, , .		1
799	Green wideband RFID tag antenna for supply chain applications. IEICE Electronics Express, 2012, 9, 1861-1866.	0.3	1
800	Comparative toxic emission analysis in production process of polymer and paper Based RFID tags. , 2012, , .		1
801	Exploring course development for green ICT in engineering education: A preliminary study. , 2012, , .		1
802	Modeling of peak-to-peak core switching noise, output impedance, and decoupling capacitance along a vertical chain of power distribution TSV pairs. Analog Integrated Circuits and Signal Processing, 2012, 73, 311-328.	0.9	1
803	A high-throughput LDPC decoder for optical communication. , 2013, , .		1
804	Electromagnetic Analysis of Radio Frequency Identification Antennas for Green Electronics. Electromagnetics, 2013, 33, 319-331.	0.3	1
805	A MIMO-based backscattering RFID with interleave division multiple access for real-time sensing applications. , 2014, , .		1
806	Modeling and Optimization of Thermoelements by a Combined Analytical and Numerical Method. Journal of Electronic Materials, 2014, 43, 404-413.	1.0	1
807	Optimization on guard time and synchronization cycle for TDMA-based deterministic RFID system. , 2015, , .		1
808	A wireless portable SOS device based on all-digital-phase-locked-loop. , 2015, , .		1
809	Microcalorimetric Study on the Growth and Metabolism of a Manganese-Oxidizing Bacterium and its Mutant Strain. Geomicrobiology Journal, 2015, 32, 585-593.	1.0	1
810	QoS based RFID system for smart assembly workshop. , 2016, , .		1

#	Article	IF	CITATIONS
811	Analytical models for channel potential and drain current in AlGaN/GaN HEMT devices., 2017,,.		1
812	Smart portable system for protein concentration detection. , 2017, , .		1
813	A new design of microstrip antenna array for microwave power transmission. Microwave and Optical Technology Letters, 2018, 60, 988-992.	0.9	1
814	Transformation of Perovskite BaBiO ₃ into Layered BaBiO _{2.5} Crystals Featuring Unusual Chemical Bonding and Luminescence. Chemistry - A European Journal, 2018, 24, 8875-8882.	1.7	1
815	An InGaN micro-LED based photodetector array for high-speed parallel visible light communication. , 2018, , .		1
816	A GaN Micro-LED Based Underwater Wireless Optical Communication Subjected to Sea Salt, Maalox and Chlorophyll. , 2018, , .		1
817	TMR Group Coding Method for Optimized SEU and MBU Tolerant Memory Design. , 2018, , .		1
818	An analytical drain current model for graphene nanoribbon tunnel field-effect transistors. Japanese Journal of Applied Physics, 2019, 58, 095001.	0.8	1
819	Singleâ€Atom Catalysts: Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970316.	11.1	1
820	Humidity effect on photoelectrical properties of photosensitive field effect transistors. Organic Electronics, 2019, 69, 42-47.	1.4	1
821	An AFE for Catheter-Based IEGM sensing with Inverter-based SAR ADC., 2019,,.		1
822	Monomeric vanadium oxide: a very efficient species for promoting aerobic oxidative dehydrogenation of N-heterocycles. New Journal of Chemistry, 2021, 45, 431-437.	1.4	1
823	Rücktitelbild: Magneticâ€Fieldâ€Stimulated Efficient Photocatalytic N ₂ Fixation over Defective BaTiO ₃ Perovskites (Angew. Chem. 21/2021). Angewandte Chemie, 2021, 133, 12252-12252.	1.6	1
824	An IoT-Based Traceability Platform for Wind Turbines. Energies, 2021, 14, 2676.	1.6	1
825	An Ultra-Low Latency Multicast Router for Large-Scale Multi-Chip Neuromorphic Processing. , 2021, , .		1
826	Hybrid Integration Technology for Wearable Sensor Systems. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 98-137.	0.3	1
827	Exploration of Autonomous Error-Tolerant (AET) Celluar Networks in System-on-a Package (SoP) for Future Nanoscle Electronic Systems. , 2006, , .		1
828	Pattern Discovery from Big Data of Food Sampling Inspections Based on Extreme Learning Machine. Lecture Notes in Business Information Processing, 2018, , 132-142.	0.8	1

#	Article	IF	Citations
829	In situ depth-resolved synchrotron radiation X-ray spectroscopy study of radiation-induced Au deposition. Journal of Synchrotron Radiation, 2019, 26, 1940-1944.	1.0	1
830	An Inverter-based On-chip Voltage Reference Generator for Low Power Application. , 2020, , .		1
831	3.4% Solarâ€toâ€Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS ₂ Nanosheets (Adv. Funct. Mater. 18/2022). Advanced Functional Materials, 2022, 32, .	7.8	1
832	Systematic Study of Perovskite Layers if Doped with Strong Oxidants. Solar Rrl, 0, , 2200159.	3.1	1
833	A Domain-Specific Accelerator for Ultralow Latency Market Data Distribution System. IEEE Transactions on Industrial Informatics, 2023, 19, 5465-5475.	7.2	1
834	Distortion of polarization hysteresis in ferroelectric thin films with conductance. , 0, , .		0
835	Application of hydrothermal mechanism for tailor-making perovskite titanate films. , 0, , .		0
836	Preparation of Pb(Zr0.52Ti484848)O3 thin films on silicon-on-insulator substrates by excimer laser deposition combined with rapid thermal annealing. Journal of Materials Science, 1996, 31, 5415-5420.	1.7	0
837	Crystallization of Thin PZT Films Deposited by Laser Ablation into Ferroelectric Perovskite Phase by Thermal Processing. Physica Status Solidi A, 1996, 154, 607-613.	1.7	0
838	<i>In-situ</i> preparation of polycrystalline BaTiO ₃ thin films on silicon by hydrothermal method. Ferroelectrics, 1997, 195, 195-198.	0.3	0
839	Effect of H+ and O+ implantation on electrical properties of SrBi2Ta2O9 ferroelectric thin films. Nuclear Instruments & Methods in Physics Research B, 1999, 147, 207-211.	0.6	0
840	SINGLE LEVEL INTEGRATION PACKAGING: MEETING THE REQUIREMENTS OF ULTRA HIGH DENSITY AND HIGH FREQUENCY. Journal of Electronics Manufacturing, 2000, 10, 59-67.	0.4	0
841	Case study of cost and performance trade-off analysis for mixed-signal integration in system-on-chip. , $0, , . \\$		0
842	On-chip versus off-chip passives analysis in radio and mixed-signal system-on-package design. , 0, , .		0
843	Cost-performance driven mixed-signal system partitioning: a case study on SDH/SONET OAN interface. , 0, , .		0
844	Robustness enhancement through chip-package co-design for high-speed electronics., 0,,.		0
845	Global Interconnect Analysis. , 2005, , 55-84.		0
846	Concurrent chip-package design for 10GHz global clock distribution network. , 0, , .		0

#	Article	IF	Citations
847	A Nanocore/CMOS Hybrid System-on-Package (SoP) Architecture for Future Nanoelectronic Systems. , 2005, , .		0
848	On-Chip versus Off-Chip Passives in Radio and Mixed-Signal System-on-Package Design. , 2006, , .		0
849	Exploration of Autonomous Error-Tolerant (AET) Celluar Networks in System-on-a Package (SoP) for Future Nanoscle Electronic Systems. , 2006, , .		0
850	Design and implementation of a high efficient power converter for self-powered UHF RFID applications. , 2006, , .		0
851	Early selection of system implementation choice among SoC, SoP and 3-D Integration. , 2007, , .		0
852	Delay-Balanced Smart Repeaters for On-Chip Global Signaling. , 2007, , .		0
853	Low noise amplifier architecture analysis for UWB system. , 2008, , .		O
854	RF transmitter architecture investigation for power efficient mobile WiMAX applications. , 2008, , .		0
855	Robust flexible high performance UHF RFID tag antenna. , 2009, , .		O
856	An ultra-low power multi-tunable triangle wave generator with frequency and amplitude control. , 2010, , .		0
857	Power distribution TSVs induced core switching noise. , 2010, , .		0
858	Peak-to-peak switching noise and LC resonance on a power distribution TSV pair., 2010,,.		0
859	Decoupling capacitance for the power integrity of 3D-DRAM-over-logic system. , 2011, , .		0
860	Welcome to IOT 2012., 2012,,.		0
861	A power scalable and high pulse swing UWB transmitter for wirelessly-powered RFID applications. , 2012, , .		0
862	Adaptive synchronization and integration region optimization for energy detection IR-UWB receivers. , 2012, , .		0
863	Design of wideband mixer and VGA for Software Defined Radio in RFID application. , 2014, , .		O
864	Architectural analysis of compressed sensing based IR-UWB receiver for communication and ranging. , 2014, , .		0

#	Article	IF	CITATIONS
865	Phase noise improvement and noise modeling of type-I ADPLL with non-linear quantization effects. , 2014, , .		0
866	Analytical models for threshold voltage, drain induced barrier lowering effect of junctionless triple-gate FinFETs., 2015,,.		0
867	Implementing MVC Decoding on Homogeneous NoCs: Circuit Switching or Wormhole Switching. , 2015, , .		O
868	Standing wave oscillator based clock distribution. , 2016, , .		0
869	Design of a standing wave oscillator based PLL. , 2016, , .		0
870	Noise-reducing architecture of compressed sensing receiver for IR-UWB ranging systems. , 2016, , .		0
871	A wearable ECG monitoring device with flexible embedded denoising and compression. , 2016, , .		0
872	A wearable ECG monitoring device with flexible embedded denoising and compression. , 2016, , .		0
873	A 101.4 GOPS/W reconfigurable and scalable control-centric embedded processor for domain-specific applications. , 2016, , .		0
874	A threshold voltage model for GaN-based heterostructure-free normally-off FinFET. , 2016, , .		0
875	Analytical models for GaN-based heterostructure-free normally off fin-shaped field-effect transistor. Japanese Journal of Applied Physics, 2017, 56, 021002.	0.8	0
876	Lowâ€power DSMâ€UWB RFIDâ€based sensor system with lowâ€process sensitivity. Electronics Letters, 2017, 53, 504-506.	0.5	0
877	An allâ€digital phaseâ€lockedâ€loop with a robustness enhanced dualâ€mode <scp>DCO</scp> . Microwave and Optical Technology Letters, 2017, 59, 312-315.	0.9	O
878	A Power management scheme for wirelessly-powered RFID tags with inkjet-printed display. , 2017, , .		0
879	A photoelectrical artificial synapse for novel neuromorphic network., 2018,,.		О
880	A temperature sensor with glucose sensor interface based on configurable incremental sigma delta ADC. IEICE Electronics Express, 2019, 16, 20181025-20181025.	0.3	0
881	A GaSb/ln0.4Ga0.6As Heterojunction Z-Shaped Tunnel Field-Effect Transistor with High Performance. , 2019, , .		О
882	An Autonomous Error-Tolerant Architecture Featuring Self-reparation for Convolutional Neural Networks. , 2020, , .		O

#	Article	IF	CITATIONS
883	Innentitelbild: Strain Engineering of a MXene/CNT Hierarchical Porous Hollow Microsphere Electrocatalyst for a Highâ€Efficiency Lithium Polysulfide Conversion Process (Angew. Chem. 5/2021). Angewandte Chemie, 2021, 133, 2198-2198.	1.6	0
884	Oxygen Reduction Reaction: MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery (Adv. Energy Mater. 6/2021). Advanced Energy Materials, 2021, 11, 2170025.	10.2	0
885	Innentitelbild: Peroxo Species Formed in the Bulk of Silicate Cathodes (Angew. Chem. 18/2021). Angewandte Chemie, 2021, 133, 9814-9814.	1.6	0
886	A Smart Catheter System for Minimally Invasive Brain Monitoring. , 2015, , .		0
887	Design and Implementation of the adaptive CCCII-OTA Filter. , 2015, , .		0
888	Hybrid Integration Technology for Wearable Sensor Systems. , 2018, , 647-678.		0
889	Hybrid Integration Technology for Wearable Sensor Systems. , 2018, , 128-160.		0
890	A Verification Method of Industrial Metal Parts using Siamese Residual Network., 2021,,.		0
891	Cognitive workload evaluation of landmarks and routes using virtual reality. PLoS ONE, 2022, 17, e0268399.	1.1	0
892	A new mobile grazing-incidence X-ray absorption fine spectroscopy endstation at Beijing Synchrotron Radiation Facility. Radiation Detection Technology and Methods, 0, , .	0.4	0