Mauro Roncarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2197193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMICO galaxy clusters in KiDS-DR3: measurement of the halo bias and power spectrum normalization from a stacked weak lensing analysis. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1484-1501.	4.4	7
2	AMICO galaxy clusters in KiDS-DR3: Cosmological constraints from counts and stacked weak lensing. Astronomy and Astrophysics, 2022, 659, A88.	5.1	25
3	<i>Euclid</i> preparation: IX. EuclidEmulator2 – power spectrum emulation with massive neutrinos and self-consistent dark energy perturbations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2840-2869.	4.4	62
4	Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3. Astrophysical Journal, Supplement Series, 2021, 256, 9.	7.7	11
5	AMICO galaxy clusters in KiDS-DR3. Astronomy and Astrophysics, 2021, 653, A19.	5.1	12
6	AMICO galaxy clusters in KiDS-DR3: Evolution of the luminosity function between <i>z</i> = 0.1 and <i>z</i> = 0.8. Astronomy and Astrophysics, 2021, 645, A9.	5.1	5
7	Euclid: the selection of quiescent and star-forming galaxies using observed colours. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2337-2354.	4.4	9
8	CoMaLit – VI. Intrinsic scatter in stacked relations. The weak lensing AMICO galaxy clusters in KiDS-DR3. Monthly Notices of the Royal Astronomical Society, 2020, 497, 894-905.	4.4	8
9	AMICO galaxy clusters in KiDS-DR3: galaxy population properties and their redshift dependence. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4303-4315.	4.4	7
10	Nature versus nurture: relic nature and environment of the most massive passive galaxies at <i>z</i> < 0.5. Astronomy and Astrophysics, 2020, 638, L11.	5.1	11
11	Constraining the origin and models of chemical enrichment in galaxy clusters using the <i>Athena</i> X-IFU. Astronomy and Astrophysics, 2020, 642, A90.	5.1	13
12	AMICO galaxy clusters in KiDS-DR3: weak lensing mass calibration. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1598-1615.	4.4	45
13	<scp>amico</scp> galaxy clusters in KiDS-DR3: sample properties and selection function. Monthly Notices of the Royal Astronomical Society, 2019, 485, 498-512.	4.4	40
14	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2019, 627, A23.	5.1	51
15	Spectral imaging of the thermal Sunyaev–Zel'dovich effect in X-COP galaxy clusters: method and validation. Astronomy and Astrophysics, 2019, 630, A121.	5.1	4
16	Hydrostatic mass profiles in X-COP galaxy clusters. Astronomy and Astrophysics, 2019, 621, A39.	5.1	102
17	Non-thermal pressure support in X-COP galaxy clusters. Astronomy and Astrophysics, 2019, 621, A40.	5.1	108
18	Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample. Astronomy and Astrophysics, 2019, 621, A41.	5.1	128

MAURO RONCARELLI

#	Article	IF	CITATIONS
19	Detecting shocked intergalactic gas with X-ray and radio observations. Astronomy and Astrophysics, 2019, 627, A5.	5.1	32
20	<i>Athena</i> X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the Universe. Astronomy and Astrophysics, 2018, 620, A173.	5.1	28
21	The kinematic Sunyaev–Zel'dovich effect of the large-scale structure (II): the effect of modified gravity. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2497-2506.	4.4	9
22	Measuring turbulence and gas motions in galaxy clusters via synthetic <i>Athena</i> X-IFU observations. Astronomy and Astrophysics, 2018, 618, A39.	5.1	36
23	AMICO: optimized detection of galaxy clusters in photometric surveys. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5221-5236.	4.4	42
24	Searching for galaxy clusters in the Kilo-Degree Survey. Astronomy and Astrophysics, 2017, 598, A107.	5.1	30
25	The XMM Cluster Outskirts Project (X-COP): Physical conditions of Abell 2142 up to the virial radius. Astronomy and Astrophysics, 2016, 595, A42.	5.1	51
26	Searching for Galaxy Clusters in the VST-KiDS Survey. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 189-195.	0.3	2
27	Constraints on \hat{I} (sub>mand $\hat{I}f$ ₈ from the potential-based cluster temperature function. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1687-1696.	4.4	11
28	Missing baryons traced by the galaxy luminosity density in large-scale WHIM filaments. Astronomy and Astrophysics, 2015, 583, A142.	5.1	29
29	Gas clumping in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2198-2208.	4.4	70
30	The effect of massive neutrinos on the Sunyaev–Zel'dovich and X-ray observables of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1761-1773.	4.4	27
31	Finding and characterising WHIM structures using the luminosity density method. Proceedings of the International Astronomical Union, 2014, 11, 368-371.	0.0	0
32	Outskirts of Galaxy Clusters. Space Science Reviews, 2013, 177, 195-245.	8.1	114
33	Large-scale inhomogeneities of the intracluster medium: improving mass estimates using the observed azimuthal scatter. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3030-3046.	4.4	73
34	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
35	The nature of the unresolved extragalactic cosmic soft X-ray background. Monthly Notices of the Royal Astronomical Society, 2012, 427, 651-663.	4.4	44
36	The effect of feedback on the emission properties of the warm-hot intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1012-1025.	4.4	27

MAURO RONCARELLI

#	Article	IF	CITATIONS
37	The gas distribution in the outer regions of galaxy clusters. Astronomy and Astrophysics, 2012, 541, A57.	5.1	116
38	The scatter in the radial profiles of X-ray luminous galaxy clusters as diagnostic of the thermodynamical state of the ICM. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2305-2313.	4.4	34
39	STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION. Astrophysical Journal, 2011, 734, 91.	4.5	21
40	Expected properties of the two-point autocorrelation function of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2011, 414, 2970-2984.	4.4	12
41	EFFECT OF METALLICITY ON X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM. Astrophysical Journal, 2010, 721, 46-58.	4.5	15
42	Imprints of primordial non-Gaussianities in X-ray and SZ signals from galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2010, 402, 923-933.	4.4	23
43	Infrared properties of the SDSS-maxBCG galaxy clusters. Astronomy and Astrophysics, 2010, 512, A20.	5.1	12
44	STUDYING THE WARM HOT INTERGALACTIC MEDIUM WITH GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 697, 328-344.	4.5	38
45	Simulating the impact of dust cooling on the statistical properties of the intra-cluster medium. Advances in Space Research, 2009, 44, 440-445.	2.6	4
46	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	3.7	19
47	EDGE: explorer of diffuse emission and gamma-ray burst explosions. , 2007, , .		5
48	The Sunyaev–Zel'dovich effects from a cosmological hydrodynamical simulation: large-scale properties and correlation with the soft X-ray signal. Monthly Notices of the Royal Astronomical Society, 2007, 378, 1259-1269.	4.4	46
49	ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving COsmos. , 2006, , .		5
50	Properties of the diffuse X-ray background in a high-resolution hydrodynamical simulation. Monthly Notices of the Royal Astronomical Society, 2006, 368, 74-84.	4.4	38
51	Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1339-1350.	4.4	87
52	The imprints of local superclusters on the Sunyaev-Zel'dovich signals and their detectability with Planck. Monthly Notices of the Royal Astronomical Society, 2005, 363, 29-39.	4.4	66
53	The kinematic Sunyaev–Zel'dovich effect of the large-scale structureÂ(I): dependence on neutrino mass. Monthly Notices of the Royal Astronomical Society, 0, , stx170.	4.4	12