Igor A Kasatkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2196592/publications.pdf

Version: 2024-02-01

186265 95266 4,717 76 28 68 citations g-index h-index papers 79 79 79 5575 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Characteristics of the formation and composition of AlxGa1-xN/AlN/por-Si/Si(111) heterostructures grown using a porous silicon buffer layer. Kondensirovannye Sredy Mezhfaznye Granitsy, 2022, 24, 51-58.	0.3	O
2	Morphological Transformation in Polymer Composite Materials Filled with Carbon Nanoparticles: Part 1â€"SEM and XRD Investigations. Materials, 2022, 15, 3531.	2.9	2
3	Highâ€performance crystallized composite carbon nanoparticles/polyimide fibers. Journal of Applied Polymer Science, 2022, 139, .	2.6	7
4	Effect of \hat{l}_{\pm} -Fe2O3 nanoparticles on the mechanism of charge storage in polypyrrole-based hydrogel. Polymer Bulletin, 2021, 78, 2389-2404.	3.3	2
5	Anisotropic crystallite size distributions in LiFePO4 powders. RSC Advances, 2021, 11, 13799-13805.	3.6	3
6	Long-term electrochemical stability of polyaniline- and polypyrrole-based hydrogels. Chemical Papers, 2021, 75, 5103-5112.	2.2	8
7	Tourmalines pyroelectric effect depending on the chemical composition and cation oxidation state. Journal of Solid State Chemistry, 2021, 303, 122512.	2.9	6
8	Investigation of Polyetherimide Melt-Extruded Fibers Modified by Carbon Nanoparticles. Materials, 2021, 14, 7251.	2.9	3
9	Structure–Property Relationship of Polyetherimide Fibers Filled with Carbon Nanoparticles. ACS Omega, 2020, 5, 10680-10686.	3.5	11
10	Green method for preparation of cellulose nanocrystals using deep eutectic solvent. Cellulose, 2020, 27, 4305-4317.	4.9	40
11	The Effect of Ammonium Chloride on the Structure of Hydroxyapatite Nanoparticles and the Proliferative Activity of Mesenchymal Stromal Cells. Technical Physics, 2020, 65, 1530-1534.	0.7	O
12	Structure evolution and mechanical properties of beryllium foils subjected to cold rolling and high-vacuum annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 750, 60-69.	5.6	7
13	Orientation-controlled, low-temperature plasma growth and applications of h-BN nanosheets. Nano Research, 2019, 12, 91-99.	10.4	17
14	Electroconductive fibrous mat prepared by electrospinning of polyacrylamide-g-polyaniline copolymers as electrode material for supercapacitors. Journal of Materials Science, 2019, 54, 4859-4873.	3.7	14
15	Flower-like silver nanocrystals: facile synthesis via a gas–solution interface technique. Journal of Materials Science, 2018, 53, 8161-8169.	3.7	9
16	3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots. Nanoscale, 2018, 10, 8313-8319.	5.6	4
17	Strong negative thermal expansion in the hexagonal polymorph of ScF ₃ . CrystEngComm, 2018, 20, 2768-2771.	2.6	9
18	Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydrate Polymers, 2018, 194, 260-266.	10.2	37

#	Article	IF	CITATIONS
19	Impregnated and Co-precipitated Pd–Ga2O3, Pd–In2O3 and Pd–Ga2O3–In2O3 Catalysts: Influence of th Microstructure on the CO2 Selectivity in Methanol Steam Reforming. Catalysis Letters, 2018, 148, 3062-3071.	e 2.6	21
20	On the in-depth density distribution of layered assemblies of Au nanoparticles on planar interfaces. Chemical Physics Letters, 2018, 706, 601-606.	2.6	2
21	Effect of Thermal Treatment on the Structure and Properties of Hydroxyapatite. Russian Journal of Applied Chemistry, 2018, 91, 368-374.	0.5	4
22	Formation of oriented LaF 3 and LaF 3: Eu $3+$ nanocrystals at the gas \hat{a} Solution interface. Journal of Fluorine Chemistry, 2017, 200, 18-23.	1.7	18
23	Study into the properties of TiN/WN multilayer nanocoatings prepared via magnetron sputtering. Journal of Surface Investigation, 2017, 11, 186-189.	0.5	2
24	Thermal stability of UV light emitting boron nitride nanowalls. Materials and Design, 2017, 117, 239-247.	7.0	9
25	Novel single-source precursors for SiB _x C _y N _z film deposition. New Journal of Chemistry, 2017, 41, 11926-11933.	2.8	6
26	Influence of low-frequency vibrations on the structure of amorphous Ti40.7Hf9.5Ni44.8Cu5 alloy. Materials Letters, 2017, 209, 231-234.	2.6	3
27	Facile synthesis of scandium fluoride oriented single-crystalline rods and urchin-like structures by a gas–solution interface technique. CrystEngComm, 2017, 19, 5412-5416.	2.6	13
28	Vertically aligned layers of hexagonal boron nitride: PECVD synthesis from triethylaminoborane and structural features. Journal of Structural Chemistry, 2017, 58, 1018-1024.	1.0	4
29	Interaction of Polyaniline with Surface of Carbon Steel. International Journal of Polymer Science, 2017, 2017, 1-9.	2.7	7
30	Influence of grain boundary state on electrical resistivity of ultrafine grained aluminium. Philosophical Magazine, 2016, 96, 2429-2444.	1.6	41
31	Changes in the fine structure of the polymeric nanocomposites according to the shape of nanoparticles. AIP Conference Proceedings, 2016 , , .	0.4	1
32	Ligand-Dependent Morphology and Optical Properties of Lead Sulfide Quantum Dot Superlattices. Journal of Physical Chemistry C, 2016, 120, 25061-25067.	3.1	23
33	Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline –) Tj ETQq1 1 0.7	84314 rgl 7.8	BŢ <i>¦</i> Overlocl
34	Inductive effect of crystalline nucleus on the structure of its local environment in the process of quartz glass crystallization. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 955-968.	0.6	3
35	X-ray diffraction study of vertically aligned layers of h-BN, obtained by PECVD from borazine and ammonia or helium mixtures. Journal of Structural Chemistry, 2015, 56, 1173-1175.	1.0	8
36	Structural aspects of mechanical properties of i <scp>PP</scp> â€based composites. I. Composite i <scp>PP</scp> fibers with <scp>VGCF</scp> nanofiller. Journal of Applied Polymer Science, 2015, 132, .	2.6	8

3

#	Article	IF	Citations
37	Supramolecular structure of chitin nanofibrils. Polymer Science - Series A, 2015, 57, 52-57.	1.0	14
38	Effect of the annealing temperature and time of the particle size of tin dioxide. Russian Journal of General Chemistry, 2015, 85, 208-210.	0.8	6
39	Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts. Applied Catalysis A: General, 2015, 502, 262-270.	4.3	202
40	Solid state reaction of preparation of chromium and iron niobates with the structure of double perovskite. Russian Journal of General Chemistry, 2015, 85, 756-757.	0.8	2
41	Facile synthesis of LaF3 strained 2D nanoparticles and microtubes at solution–gas interface. Journal of Fluorine Chemistry, 2015, 180, 117-121.	1.7	22
42	Influence of the microstructure on the physicomechanical properties of the aluminum alloy Al–Mg–Si nanostructured under severe plastic deformation. Physics of the Solid State, 2015, 57, 2051-2058.	0.6	15
43	Ternary and quaternary Cr or Ga-containing ex-LDH catalysts—Influence of the additional oxides onto the microstructure and activity of Cu/ZnAl2O4 catalysts. Catalysis Today, 2015, 246, 92-100.	4.4	27
44	Structure, optical properties and visible-light-induced photochemical activity of nanocrystalline ZnO films deposited by atomic layer deposition onto Si(100). Thin Solid Films, 2014, 573, 128-133.	1.8	9
45	Cuâ€Based Catalyst Resulting from a Cu,Zn,Al Hydrotalciteâ€Like Compound: A Microstructural, Thermoanalytical, and Inâ€Situ XAS Study. Chemistry - A European Journal, 2014, 20, 3782-3792.	3.3	89
46	Selective formation of hydroxyapatite layers on titanium dioxide. Russian Journal of Applied Chemistry, 2014, 87, 1591-1598.	0.5	5
47	Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydrate Polymers, 2014, 108, 176-182.	10.2	114
48	Microstructural and Defect Analysis of Metal Nanoparticles in Functional Catalysts by Diffraction and Electron Microscopy: The Cu/ZnO Catalyst for Methanol Synthesis. Topics in Catalysis, 2014, 57, 188-206.	2.8	33
49	Dynamic Surface Processes of Nanostructured Pd2Ga Catalysts Derived from Hydrotalcite-Like Precursors. ACS Catalysis, 2014, 4, 2048-2059.	11.2	40
50	X-ray studies of aluminum alloy of the Al-Mg-Si system subjected to SPD processing. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012087.	0.6	3
51	Counting of Oxygen Defects versus Metal Surface Sites in Methanol Synthesis Catalysts by Different Probe Molecules. Angewandte Chemie - International Edition, 2014, 53, 7043-7047.	13.8	119
52	Surface dynamics of the intermetallic catalyst Pd2Ga, Part I – Structural stability in UHV and different gas atmospheres. Journal of Catalysis, 2014, 309, 209-220.	6.2	39
53	Surface dynamics of the intermetallic catalyst Pd2Ga, Part II – Reactivity and stability in liquid-phase hydrogenation of phenylacetylene. Journal of Catalysis, 2014, 309, 221-230.	6.2	62
54	The effect of Al-doping on ZnO nanoparticles applied as catalyst support. Physical Chemistry Chemical Physics, 2013, 15, 1374-1381.	2.8	66

#	Article	IF	Citations
55	Inâ€Situ Study of Catalytic Processes: Neutron Diffraction of a Methanol Synthesis Catalyst at Industrially Relevant Pressure. Angewandte Chemie - International Edition, 2013, 52, 5166-5170.	13.8	68
56	Heterogeneous Catalysis under pressure - <i>In-situ</i> li>neutron diffraction under industrial conditions. Journal of Physics: Conference Series, 2012, 340, 012053.	0.4	5
57	Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. Journal of Catalysis, 2012, 293, 27-38.	6.2	135
58	Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Nanoscale, 2012, 4, 2018.	5.6	34
59	The Active Site of Methanol Synthesis over Cu/ZnO/Al ₂ O ₃ Industrial Catalysts. Science, 2012, 336, 893-897.	12.6	2,018
60	Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. Chemical Communications, 2011, 47, 1701.	4.1	62
61	Intermetallic Compound Pd2Ga as a Selective Catalyst for the Semi-Hydrogenation of Acetylene: From Model to High Performance Systems. Journal of Physical Chemistry C, 2011, 115, 1368-1374.	3.1	109
62	The Potential of Microstructural Optimization in Metal/Oxide Catalysts: Higher Intrinsic Activity of Copper by Partial Embedding of Copper Nanoparticles. ChemCatChem, 2010, 2, 816-818.	3.7	49
63	Phase-Pure Cu,Zn,Al Hydrotalcite-like Materials as Precursors for Copper rich Cu/ZnO/Al ₂ O ₃ Catalysts. Chemistry of Materials, 2010, 22, 386-397.	6.7	170
64	A Study of the Influence of Composition on the Microstructural Properties of ZnO/Al ₂ O ₃ Mixed Oxides. European Journal of Inorganic Chemistry, 2009, 2009, 910-921.	2.0	32
65	Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reformingâ€"A comparative study. Applied Catalysis A: General, 2008, 348, 153-164.	4.3	105
66	Role of Lattice Strain and Defects in Copper Particles on the Activity of Cu/ZnO/Al ₂ O ₃ Catalysts for Methanol Synthesis. Angewandte Chemie - International Edition, 2007, 46, 7324-7327.	13.8	223
67	Cu/ZnO and Cu/ZrO2interactions studied by contact angle measurement with TEM. Physical Chemistry Chemical Physics, 2007, 9, 878-883.	2.8	16
68	The Microstructure of Copper Zinc Oxide Catalysts: Bridging the Materials Gap. Angewandte Chemie - International Edition, 2005, 44, 4704-4707.	13.8	123
69	ZrO ₂ . Journal of Materials Science, 2004, 39, 2151-2157.	3.7	32
70	HRTEM study of Cu/ZrO2 catalyst. An evidence of a new perovskite-like oxide ZrCuO3. Journal of Materials Science Letters, 2003, 22, 335-337.	0.5	1
71	Continuous Coprecipitation of Catalysts in a Micromixer: Nanostructured Cu/ZnO Composite for the Synthesis of Methanol. Angewandte Chemie - International Edition, 2003, 42, 3815-3817.	13.8	84
72	Interferometric Study of MgSO4Â-7H2O Single Crystal Growth Kinetics from Solution. Crystal Research and Technology, 2002, 37, 193-206.	1.3	4

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Structural Chemistry, 2002, 43, 118-124.	1.0	O
74	Growth Rate anisotropy of the K2(S,Cr)O4 Mixed Crystals Grown from Aqueous Solution. Crystal Research and Technology, 1998, 33, 435-439.	1.3	O
75	Effect of induced thermal instability on the growth of mixed crystals from aqueous solution: determination of effective supersaturation and solution composition at the interface. Journal of Crystal Growth, 1997, 182, 111-115.	1.5	O
76	Kinetics of Mixed Crystal K2(SO4, CrO4) Growth from Aqueous Solution. Crystal Research and Technology, 1995, 30, 659-666.	1.3	9