Colette Larre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2196302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Milk allergens, their characteristics and their detection in food: A review. European Food Research and Technology, 2006, 223, 149-179.	3.3	195
2	Modification of pasta structure induced by high drying temperatures. Effects on the in vitro digestibility of protein and starch fractions and the potential allergenicity of protein hydrolysates. Food Chemistry, 2009, 116, 401-412.	8.2	125
3	Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 37-63.	6.5	99
4	Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 1-36.	6.5	86
5	Multi-allergen detection in food by micro high-performance liquid chromatography coupled to a dual cell linear ion trap mass spectrometry. Journal of Chromatography A, 2014, 1358, 136-144.	3.7	84
6	Multiâ€allergen quantification of finingâ€related egg and milk proteins in white wines by highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 2009-2018.	1.5	80
7	Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. TrAC - Trends in Analytical Chemistry, 2018, 106, 21-36.	11.4	74
8	Allergy to deamidated gluten in patients tolerant to wheat: specific epitopes linked to deamidation. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1023-1032.	5.7	70
9	The relevance of a digestibility evaluation in the allergenicity risk assessment of novel proteins. Opinion of a joint initiative of COST action ImpARAS and COST action INFOCEST. Food and Chemical Toxicology, 2019, 129, 405-423.	3.6	67
10	CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	55
11	Wheat gliadins modified by deamidation are more efficient than native gliadins in inducing a Th2 response in Balb/c mice experimentally sensitized to wheat allergens. Molecular Nutrition and Food Research, 2012, 56, 336-344.	3.3	52
12	Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods. Food Chemistry, 2017, 221, 1747-1753.	8.2	50
13	Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food and Function, 2017, 8, 1599-1610.	4.6	48
14	In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food. Analytical and Bioanalytical Chemistry, 2018, 410, 5653-5662.	3.7	48
15	Polyphenol Interactions Mitigate the Immunogenicity and Allergenicity of Gliadins. Journal of Agricultural and Food Chemistry, 2017, 65, 6442-6451.	5.2	47
16	Peanut digestome: Identification of digestion resistant IgE binding peptides. Food and Chemical Toxicology, 2017, 107, 88-98.	3.6	44
17	Wheat ATIs: Characteristics and Role in Human Disease. Frontiers in Nutrition, 2021, 8, 667370.	3.7	42
18	Critical review on proteotypic peptide marker tracing for six allergenic ingredients in incurred foods by mass spectrometry. Food Research International, 2020, 128, 108747.	6.2	36

COLETTE LARRE

#	Article	IF	CITATIONS
19	Orbitrapâ"¢ monostage MS <i>versus</i> hybrid linear ion trap MS: application to multiâ€allergen screening in wine. Journal of Mass Spectrometry, 2014, 49, 1254-1263.	1.6	34
20	Effect of thermal/pressure processing and simulated human digestion on the immunoreactivity of extractable peanut allergens. Food Research International, 2018, 109, 126-137.	6.2	33
21	How much does transgenesis affect wheat allergenicity?. Journal of Proteomics, 2013, 80, 281-291.	2.4	32
22	Feasibility of a capillary LC/ESI-Q-TOF MS method for the detection of milk allergens in an incurred model food matrix. Analytical Methods, 2010, 2, 967.	2.7	29
23	Allergenicity of Fermented Foods: Emphasis on Seeds Protein-Based Products. Foods, 2020, 9, 792.	4.3	29
24	Coupling SPE on-line pre-enrichment with HPLC and MS/MS for the sensitive detection of multiple allergens in wine. Food Control, 2017, 73, 814-820.	5.5	28
25	Food labeling issues for severe food allergic patients. World Allergy Organization Journal, 2021, 14, 100598.	3.5	27
26	Development of a Method for the Quantification of Caseinate Traces in Italian Commercial White Wines Based on Liquid Chromatography–Electrospray Ionization–Ion Trap–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 12436-12444.	5.2	23
27	Detection and Quantification of Allergens in Foods and Minimum Eliciting Doses in Food-Allergic Individuals (ThRAll). Journal of AOAC INTERNATIONAL, 2019, 102, 1346-1353.	1.5	22
28	Thermal treatment reduces gliadin recognition by IgE, but a subsequent digestion and epithelial crossing permits recovery. Food Research International, 2019, 118, 22-31.	6.2	22
29	Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes. International Journal of Molecular Sciences, 2020, 21, 5817.	4.1	22
30	Validation of a MS Based Proteomics Method for Milk and Egg Quantification in Cookies at the Lowest VITAL Levels: An Alternative to the Use of Precautionary Labeling. Foods, 2020, 9, 1489.	4.3	22
31	Combined microwave processing and enzymatic proteolysis of bovine whey proteins: the impact on bovine β-lactoglobulin allergenicity. Journal of Food Science and Technology, 2019, 56, 177-186.	2.8	21
32	Development of a mass spectrometry immunoassay for unambiguous detection of egg allergen traces in wines. Analytical and Bioanalytical Chemistry, 2017, 409, 1581-1589.	3.7	20
33	Peer-Reviewed Literature on Grain Legume Species in the WoS (1980–2018): A Comparative Analysis of Soybean and Pulses. Sustainability, 2019, 11, 6833.	3.2	20
34	Food allergens: Classification, molecular properties, characterization, and detection in food sources. Advances in Food and Nutrition Research, 2020, 93, 113-146.	3.0	20
35	Assessment of the allergenicity of soluble fractions from GM and commercial genotypes of wheats. Journal of Cereal Science, 2014, 60, 179-186.	3.7	19
36	Wheat ATI CM3, CM16 and 0.28 Allergens Produced in Pichia Pastoris Display a Different Eliciting Potential in Food Allergy to Wheat ‡. Plants, 2018, 7, 101.	3.5	19

COLETTE LARRE

#	Article	IF	CITATIONS
37	Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects. European Journal of Nutrition, 2022, 61, 2873-2880.	3.9	18
38	Allergic reactions to hydrolysed wheat proteins: clinical aspects and molecular structures of the allergens involved. Critical Reviews in Food Science and Nutrition, 2020, 60, 147-156.	10.3	17
39	Digestion differently affects the ability of native and thermally aggregated ovalbumin to trigger basophil activation. Food Research International, 2019, 118, 108-114.	6.2	16
40	Discovery based high resolution MS/MS analysis for selection of allergen markers in chocolate and broth powder matrices. Food Chemistry, 2021, 343, 128533.	8.2	13
41	Structural Basis of IgE Binding to α- and γ-Gliadins: Contribution of Disulfide Bonds and Repetitive and Nonrepetitive Domains. Journal of Agricultural and Food Chemistry, 2015, 63, 6546-6554.	5.2	12
42	Fermentation of Gluten by Lactococcus lactis LLGKC18 Reduces its Antigenicity and Allergenicity. Probiotics and Antimicrobial Proteins, 2022, 14, 779-791.	3.9	12
43	Emerging Allergens in Goji Berry Superfruit: The Identification of New IgE Binding Proteins towards Allergic Patients' Sera. Biomolecules, 2020, 10, 689.	4.0	10
44	Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products. Foods, 2022, 11, 728.	4.3	10
45	Selection of a monoclonal antibody for detection of gliadins and glutenins: A step towards reliable gluten quantification. Journal of Cereal Science, 2012, 56, 760-763.	3.7	9
46	Green Sonoextraction of Protein from Oleaginous Press Rapeseed Cake. Molecules, 2017, 22, 80.	3.8	9
47	Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. International Journal of Molecular Sciences, 2020, 21, 239.	4.1	9
48	Cell Wall Proteome Investigation of Bread Wheat (<i>Triticum Aestivum</i>) Developing Grain in Endosperm and Outer Layers. Proteomics, 2018, 18, e1800286.	2.2	5
49	Development of incurred chocolate bars and broth powder with six fully characterised food allergens as test materials for food allergen analysis. Analytical and Bioanalytical Chemistry, 2022, 414, 2553-2570.	3.7	5
50	Optimization of large-scale purification of omega gliadins and other wheat gliadins. Journal of Cereal Science, 2022, 103, 103386.	3.7	4
51	L'allergie au pois. Revue Francaise D'allergologie, 2019, 59, 162-165.	0.2	3