Tianpeng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195978/publications.pdf

Version: 2024-02-01

	1163117	1125743
165	8	13
citations	h-index	g-index
18	18	80
docs citations	times ranked	citing authors
	citations 18	165 8 citations h-index 18 18

#	Article	IF	CITATIONS
1	A combined phase evolution, mechanical and electrical analysis of Mg-PSZ with TiO2 addition. Materials Chemistry and Physics, 2022, 276, 125316.	4.0	2
2	Electrical conductivity behavior of ZrO2-MgO-Y2O3 ceramic: effect of heat treatment temperature. Journal of the Australian Ceramic Society, 2022, 58, 421.	1.9	4
3	Enhancement of the electrochemical performance in MgO stabilized ZrO2 oxygen sensors by co-doping trivalent metal oxides. Current Applied Physics, 2022, 39, 133-139.	2.4	4
4	Development of a novel hydrophobic and lipophilic material based on mullite fiber-based porous ceramics matrix used for highly efficient oil-water separation. Ceramics International, 2021, 47, 9948-9954.	4.8	14
5	Synthesis and characterization of mullite-ZrO2 porous fibrous ceramic for highly efficient oil-water separation. Ceramics International, 2021, 47, 22709-22716.	4.8	14
6	Modified superhydrophilic/underwater superoleophobic mullite fiber-based porous ceramic for oil-water separation. Materials Research Bulletin, 2021, 143, 111454.	5.2	23
7	Preparation and characterization of (Ca2+, Al3+)-infiltrated CaO-Al2O3 auxiliary electrode for electrochemical sulfur sensor. Journal of Industrial and Engineering Chemistry, 2021, 106, 393-393.	5.8	2
8	Behavior and mechanism of in-situ synthesis of auxiliary electrode for electrochemical sulfur sensor by calcium aluminate system. Ceramics International, 2020, 46, 4256-4264.	4.8	9
9	Enhanced ionic conductivity and thermal shock resistance of MgO stabilized ZrO2 doped with Y2O3. Ceramics International, 2020, 46, 19835-19842.	4.8	27
10	Effect of phosphorus in the molten iron on the performance of electrochemical sulfur sensor prepared by ZrO2(MgO)/CaAl2O4+CaAl4O7. Materials Research Bulletin, 2020, 125, 110805.	5. 2	1
11	Effect of CeO ₂ addition on the sintering behavior of the aluminaâ€rich calcium aluminate ceramics. International Journal of Applied Ceramic Technology, 2020, 17, 1761-1768.	2.1	5
12	A novel electrochemical sensor for phosphorus determination in the high phosphorus liquid iron. Journal of Materials Research and Technology, 2020, 9, 3530-3536.	5.8	3
13	Enhancing the properties of ZrO2(MgO)/CaO–Al2O3 bilayer structure by doping CeO2 for application in metallurgical electrochemical sensor. Journal of Alloys and Compounds, 2020, 827, 154313.	5.5	4
14	Structure and ionic conductivity of ZrO2(MgO)/CaO-Al2O3 bilayer system used as solid electrolyte for sulfur sensor. Materials Research Bulletin, 2019, 117, 113-119.	5.2	13
15	Fabrication of ZrO2(MgO)/CaAl2O4+CaAl4O7 Bilayer Structure Used for Sulfur Sensor by Laser Cladding. Applied Sciences (Switzerland), 2019, 9, 1036.	2.5	0
16	Effects of the Molding Method and Blank Size of Green Body on the Sintering Densification of Magnesia. Materials, 2019, 12, 647.	2.9	5
17	Application of solid electrochemical sulfur sensor in the liquid iron. Sensors and Actuators B: Chemical, 2019, 279, 177-182.	7.8	21
18	Fabrication of high-density magnesia using vacuum compaction molding. Ceramics International, 2018, 44, 6390-6394.	4.8	14