## Assistâ€P.rof Krzysztof Kazimierczuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195955/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Accelerated NMR Spectroscopy by Using Compressed Sensing. Angewandte Chemie - International Edition, 2011, 50, 5556-5559.                                                                 | 7.2 | 470       |
| 2  | Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. Journal of Magnetic Resonance, 2006, 179, 323-328.                                                                | 1.2 | 135       |
| 3  | Nonâ€uniform sampling: postâ€Fourier era of NMR data collection and processing. Magnetic Resonance in<br>Chemistry, 2015, 53, 921-926.                                                    | 1.1 | 107       |
| 4  | Random sampling of evolution time space and Fourier transform processing. Journal of Biomolecular<br>NMR, 2006, 36, 157-168.                                                              | 1.6 | 101       |
| 5  | Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. Journal of Biomolecular NMR, 2010, 48, 169-177. | 1.6 | 99        |
| 6  | Random sampling in multidimensional NMR spectroscopy. Progress in Nuclear Magnetic Resonance<br>Spectroscopy, 2010, 57, 420-434.                                                          | 3.9 | 97        |
| 7  | Optimization of random time domain sampling in multidimensional NMR. Journal of Magnetic<br>Resonance, 2008, 192, 123-130.                                                                | 1.2 | 94        |
| 8  | Non-uniform frequency domain for optimal exploitation of non-uniform sampling. Journal of<br>Magnetic Resonance, 2010, 205, 286-292.                                                      | 1.2 | 86        |
| 9  | Narrow peaks and high dimensionalities: Exploiting the advantages of random sampling. Journal of<br>Magnetic Resonance, 2009, 197, 219-228.                                               | 1.2 | 75        |
| 10 | Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets.<br>Journal of Magnetic Resonance, 2007, 188, 344-356.                                  | 1.2 | 70        |
| 11 | Iterative Thresholding Algorithm for Multiexponential Decay Applied to PGSE NMR Data. Analytical<br>Chemistry, 2013, 85, 1828-1833.                                                       | 3.2 | 63        |
| 12 | Fast time-resolved NMR with non-uniform sampling. Progress in Nuclear Magnetic Resonance<br>Spectroscopy, 2020, 116, 40-55.                                                               | 3.9 | 60        |
| 13 | A comparison of convex and non-convex compressed sensing applied to multidimensional NMR.<br>Journal of Magnetic Resonance, 2012, 223, 1-10.                                              | 1.2 | 51        |
| 14 | Pitfalls in compressed sensing reconstruction and how to avoid them. Journal of Biomolecular NMR, 2017, 68, 79-98.                                                                        | 1.6 | 49        |
| 15 | Analysis of Complex Reacting Mixtures by Time-Resolved 2D NMR. Analytical Chemistry, 2015, 87, 1337-1343.                                                                                 | 3.2 | 38        |
| 16 | Monitoring polydispersity by NMR diffusometry with tailored norm regularisation and moving-frame processing. Analyst, The, 2016, 141, 1745-1752.                                          | 1.7 | 37        |
| 17 | A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins.<br>Journal of Magnetic Resonance, 2010, 202, 109-116.                                       | 1.2 | 32        |
| 18 | Highâ€Dimensional NMR Spectra for Structural Studies of Biomolecules. ChemPhysChem, 2013, 14, 3015-3025.                                                                                  | 1.0 | 31        |

| #  | Article                                                                                                                                                                                                                                             | IF           | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 19 | Criteria for sensitivity enhancement by compressed sensing: practical application to anisotropic NAD 2D-NMR spectroscopy. Analyst, The, 2014, 139, 2702.                                                                                            | 1.7          | 28        |
| 20 | Generalized Fourier Transform for Non-Uniform Sampled Data. Topics in Current Chemistry, 2011, 316, 79-124.                                                                                                                                         | 4.0          | 27        |
| 21 | Accelerating Diffusionâ€Ordered NMR Spectroscopy by Joint Sparse Sampling of Diffusion and Time<br>Dimensions. Angewandte Chemie - International Edition, 2014, 53, 6464-6467.                                                                      | 7.2          | 27        |
| 22 | Monitoring Hydrogenation Reactions using Benchtop 2D NMR with Extraordinary Sensitivity and Spectral Resolution. ChemistryOpen, 2019, 8, 196-200.                                                                                                   | 0.9          | 27        |
| 23 | Determination of Spinâ^'Spin Couplings from Ultrahigh Resolution 3D NMR Spectra Obtained by<br>Optimized Random Sampling and Multidimensional Fourier Transformation. Journal of the American<br>Chemical Society, 2008, 130, 5404-5405.            | 6.6          | 24        |
| 24 | Initial DNA Interactions of the Binuclear Threading Intercalator<br>Λ,Λâ€{μâ€bidppz(bipy) <sub>4</sub> Ru <sub>2</sub> ] <sup>4+</sup> : An NMR Study with<br>[d(CGCGAATTCGCG)] <sub>2</sub> . Chemistry - A European Journal, 2013, 19, 5401-5410. | 1.7          | 24        |
| 25 | Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures.<br>Frontiers in Microbiology, 2017, 8, 1306.                                                                                                           | 1.5          | 23        |
| 26 | TReNDS—Software for reaction monitoring with timeâ€resolved nonâ€uniform sampling. Magnetic<br>Resonance in Chemistry, 2019, 57, 4-12.                                                                                                              | 1.1          | 22        |
| 27 | Twoâ€Ðimensional NMR Spectroscopy with Temperatureâ€Sweep. ChemPhysChem, 2014, 15, 2217-2220.                                                                                                                                                       | 1.0          | 21        |
| 28 | EXtended ACquisition Time (EXACT) NMR—A Case for ′Burst′ Nonâ€Uniform Sampling. ChemPhysChem, 2<br>17, 2799-2803.                                                                                                                                   | 2016,<br>1.0 | 21        |
| 29 | Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies. Journal of Biomolecular NMR, 2017, 68, 155-161.                                                                                    | 1.6          | 19        |
| 30 | Study of nearâ€symmetric cyclodextrins by compressed sensing 2D NMR. Magnetic Resonance in Chemistry, 2013, 51, 110-115.                                                                                                                            | 1.1          | 17        |
| 31 | Efficient compensation of low-frequency magnetic field disturbances in NMR with fluxgate sensors.<br>Journal of Magnetic Resonance, 2005, 174, 287-291.                                                                                             | 1.2          | 16        |
| 32 | Artifacts in time-resolved NUS: A case study of NOE build-up curves from 2D NOESY. Journal of<br>Magnetic Resonance, 2016, 265, 108-116.                                                                                                            | 1.2          | 16        |
| 33 | Enabling Fast Pseudoâ€⊋D NMR Spectral Acquisition for Broadband Homonuclear Decoupling: The EXACT<br>NMR Approach. ChemPhysChem, 2017, 18, 2081-2087.                                                                                               | 1.0          | 16        |
| 34 | Quick, sensitive serial NMR experiments with Radon transform. Journal of Magnetic Resonance, 2017, 282, 114-118.                                                                                                                                    | 1.2          | 16        |
| 35 | Resolution enhancement in NMR spectra by deconvolution with compressed sensing reconstruction.<br>Chemical Communications, 2020, 56, 14585-14588.                                                                                                   | 2.2          | 13        |
| 36 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLoS<br>Computational Biology, 2020, 16, e1007904.                                                                                                     | 1.5          | 13        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Amino acid recognition for automatic resonance assignment of intrinsically disordered proteins.<br>Journal of Biomolecular NMR, 2016, 64, 239-253.                                             | 1.6 | 12        |
| 38 | Fast acquisition of multidimensional NMR spectra of solids and mesophases using alternative sampling methods. Magnetic Resonance in Chemistry, 2015, 53, 927-939.                              | 1.1 | 11        |
| 39 | Alternative data processing techniques for serial <scp>NMR</scp> experiments. Concepts in Magnetic<br>Resonance Part A: Bridging Education and Research, 2017, 46A, .                          | 0.2 | 11        |
| 40 | Accelerated acquisition in pure-shift spectra based on prior knowledge from <sup>1</sup> H NMR.<br>Chemical Communications, 2019, 55, 9563-9566.                                               | 2.2 | 11        |
| 41 | Clustered sparsity and Poisson-gap sampling. Journal of Biomolecular NMR, 2021, 75, 401-416.                                                                                                   | 1.6 | 11        |
| 42 | Quick temperature-sweep pure-shift NMR: the case of solvent effects in atorvastatin. Physical<br>Chemistry Chemical Physics, 2019, 21, 19209-19215.                                            | 1.3 | 10        |
| 43 | Nonstationary Two-Dimensional Nuclear Magnetic Resonance: A Method for Studying Reaction Mechanisms in Situ. Analytical Chemistry, 2019, 91, 11306-11315.                                      | 3.2 | 10        |
| 44 | Modified OMP Algorithm for Exponentially Decaying Signals. Sensors, 2015, 15, 234-247.                                                                                                         | 2.1 | 9         |
| 45 | SCoT: Swept coherence transfer for quantitative heteronuclear 2D NMR. Journal of Magnetic Resonance, 2018, 294, 1-6.                                                                           | 1.2 | 9         |
| 46 | Enhancing Compression Level for More Efficient Compressed Sensing and Other Lessons from NMR Spectroscopy. Sensors, 2020, 20, 1325.                                                            | 2.1 | 9         |
| 47 | Temperature as an Extra Dimension in Multidimensional Protein NMR Spectroscopy. Chemistry - A<br>European Journal, 2021, 27, 1753-1767.                                                        | 1.7 | 9         |
| 48 | Toward the synthesis, fluorination and application of N–graphyne. RSC Advances, 2020, 10,<br>40019-40029.                                                                                      | 1.7 | 8         |
| 49 | Benefits of timeâ€resolved nonuniform sampling in reaction monitoring: The case of azaâ€Michael<br>addition of benzylamine and acrylamide. Magnetic Resonance in Chemistry, 2021, 59, 213-220. | 1.1 | 8         |
| 50 | Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wires. Nanoscale, 2021, 13, 9773-9787.               | 2.8 | 7         |
| 51 | Variable-temperature NMR spectroscopy for metabolite identification in biological materials. RSC<br>Advances, 2021, 11, 35321-35325.                                                           | 1.7 | 7         |
| 52 | NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR.<br>Magnetic Resonance, 2021, 2, 843-861.                                                        | 0.8 | 7         |
| 53 | 1H, 13C, and 15N chemical shifts assignments for human endothelial monocyte-activating polypeptide<br>EMAP II. Biomolecular NMR Assignments, 2013, 7, 25-29.                                   | 0.4 | 5         |
| 54 | Nonâ€Stationary Complementary Nonâ€Uniform Sampling (NOSCO NUS) for Fast Acquisition of Serial 2D<br>NMR Titration Data. Angewandte Chemie - International Edition, 2020, 59, 23496-23499.     | 7.2 | 4         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A novel high-dimensional NMR experiment for resolving protein backbone dihedral angle ambiguities.<br>Journal of Biomolecular NMR, 2020, 74, 257-265.                                                       | 1.6 | 4         |
| 56 | Enhancing benchtop NMR spectroscopy by means of sample shifting. Analyst, The, 2020, 145, 7406-7411.                                                                                                        | 1.7 | 3         |
| 57 | A method for joint sparse sampling of time and gradient domains in diffusion-ordered NMR spectroscopy. , 2013, , .                                                                                          |     | 2         |
| 58 | Non‣tationary Complementary Nonâ€Uniform Sampling (NOSCO NUS) for Fast Acquisition of Serial 2D NMR Titration Data. Angewandte Chemie, 2020, 132, 23702-23705.                                              | 1.6 | 2         |
| 59 | Diazonium-Based Covalent Molecular Wiring of Single-Layer Graphene Leads to Enhanced<br>Unidirectional Photocurrent Generation through the p-doping Effect. Chemistry of Materials, 2022,<br>34, 3744-3758. | 3.2 | 2         |
| 60 | Enhanced Nuclear Magnetic Resonance Spectroscopy with Isotropic Mixing as a Pseudodimension.<br>Analytical Chemistry, 2022, 94, 9114-9121.                                                                  | 3.2 | 2         |
| 61 | Blue‧hift Hydrogen Bonds in Silyltriptycene Derivatives: Antibonding σ* Orbitals of the Siâ^'C Bond as Effective Acceptors of Electron Density. ChemPhysChem, 2020, 21, 540-545.                            | 1.0 | 1         |
| 62 | Applications of alternative sampling methods. Magnetic Resonance in Chemistry, 2021, 59, 199-200.                                                                                                           | 1.1 | 1         |
| 63 | Progress in structural studies of proteins by NMR spectroscopy. Polimery, 2007, 52, 736-744.                                                                                                                | 0.4 | 1         |
| 64 | Design of a D3h-symmetry prismatic tris-(ferrocene-1,1Ê1-diyl) molecular cage bearing boronate ester<br>linkages. Dalton Transactions, 0, , .                                                               | 1.6 | 1         |
| 65 | Sweeping Apparatus for Polarisation Enhancement (SWAPE) in benchtop nuclear magnetic resonance spectroscopy. Spectroscopy Europe, 0, , 14.                                                                  | 0.0 | Ο         |
| 66 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | 0         |
| 67 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | Ο         |
| 68 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | 0         |
| 69 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | 0         |
| 70 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | 0         |
| 71 | Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. , 2020, 16, e1007904.                                                                                          |     | 0         |