Gang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195940/publications.pdf

Version: 2024-02-01

			159358	138251
83		3,849	30	58
papers	,	citations	h-index	g-index
86		86	86	3399
00		00	00	3377
all doc	s	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. Cerebral Cortex, 2015, 25, 2204-2212.	1.6	286
2	The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. NeuroImage, 2019, 185, 891-905.	2.1	234
3	LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Neurolmage, 2015, 108, 160-172.	2.1	208
4	Mapping Region-Specific Longitudinal Cortical Surface Expansion from Birth to 2 Years of Age. Cerebral Cortex, 2013, 23, 2724-2733.	1.6	203
5	Mapping Longitudinal Development of Local Cortical Gyrification in Infants from Birth to 2 Years of Age. Journal of Neuroscience, 2014, 34, 4228-4238.	1.7	203
6	Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 2014, 84, 141-158.	2.1	161
7	Spatial Patterns, Longitudinal Development, and Hemispheric Asymmetries of Cortical Thickness in Infants from Birth to 2 Years of Age. Journal of Neuroscience, 2015, 35, 9150-9162.	1.7	148
8	Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2219-2230.	5.4	136
9	Computational neuroanatomy of baby brains: A review. NeuroImage, 2019, 185, 906-925.	2.1	125
10	Mapping Longitudinal Hemispheric Structural Asymmetries of the Human Cerebral Cortex From Birth to 2 Years of Age. Cerebral Cortex, 2014, 24, 1289-1300.	1.6	121
11	Axonal Fiber Terminations Concentrate on Gyri. Cerebral Cortex, 2012, 22, 2831-2839.	1.6	116
12	Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. NeuroImage, 2014, 90, 266-279.	2.1	113
13	Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Medical Image Analysis, 2015, 25, 22-36.	7.0	112
14	Structural and Maturational Covariance in Early Childhood Brain Development. Cerebral Cortex, 2017, 27, bhw022.	1.6	111
15	Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage, 2014, 100, 206-218.	2.1	107
16	Consistent reconstruction of cortical surfaces from longitudinal brain MR images. Neurolmage, 2012, 59, 3805-3820.	2.1	96
17	Developmental topography of cortical thickness during infancy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15855-15860.	3.3	82
18	First-year development of modules and hubs in infant brain functional networks. NeuroImage, 2019, 185, 222-235.	2.1	70

#	Article	IF	CITATIONS
19	Gyral folding pattern analysis via surface profiling. NeuroImage, 2010, 52, 1202-1214.	2.1	62
20	Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis. Lecture Notes in Computer Science, 2018, 11072, 411-419.	1.0	61
21	Environmental Influences on Infant Cortical Thickness and Surface Area. Cerebral Cortex, 2019, 29, 1139-1149.	1.6	60
22	Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 1363-1376.	5.4	53
23	Cortical thickness and surface area in neonates at high risk for schizophrenia. Brain Structure and Function, 2016, 221, 447-461.	1.2	52
24	A Computational Growth Model for Measuring Dynamic Cortical Development in the First Year of Life. Cerebral Cortex, 2012, 22, 2272-2284.	1.6	49
25	An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis, 2010, 14, 343-359.	7.0	44
26	Genetic influences on neonatal cortical thickness and surface area. Human Brain Mapping, 2018, 39, 4998-5013.	1.9	43
27	Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks. Lecture Notes in Computer Science, 2019, 11767, 475-483.	1.0	39
28	Spherical U-Net on Cortical Surfaces: Methods and Applications. Lecture Notes in Computer Science, 2019, 11492, 855-866.	1.0	37
29	Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Medical Image Analysis, 2014, 18, 1274-1289.	7.0	34
30	Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction. IEEE Transactions on Medical Imaging, 2021, 40, 1217-1228.	5.4	33
31	Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human Brain Mapping, 2015, 36, 5183-5195.	1.9	32
32	Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patchâ€based groupâ€wise sparse representation. Human Brain Mapping, 2019, 40, 3860-3880.	1.9	31
33	Fetal cortical surface atlas parcellation based on growth patterns. Human Brain Mapping, 2019, 40, 3881-3899.	1.9	31
34	Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing. Medical Image Analysis, 2016, 28, 1-12.	7.0	27
35	Disentangled-Multimodal Adversarial Autoencoder: Application to Infant Age Prediction With Incomplete Multimodal Neuroimages. IEEE Transactions on Medical Imaging, 2020, 39, 4137-4149.	5.4	27
36	Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. NeuroImage, 2019, 185, 575-592.	2.1	25

#	Article	IF	CITATIONS
37	Cortical Structure and Cognition in Infants and Toddlers. Cerebral Cortex, 2020, 30, 786-800.	1.6	25
38	Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Human Brain Mapping, 2020, 41, 1985-2003.	1.9	25
39	Multi-task prediction of infant cognitive scores from longitudinal incomplete neuroimaging data. Neurolmage, 2019, 185, 783-792.	2.1	24
40	Cortical surface based identification of brain networks using high spatial resolution resting state FMRI data. , $2010, $, .		23
41	Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI. Neurolmage, 2017, 152, 411-424.	2.1	23
42	Registration-Free Infant Cortical Surface Parcellation Using Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, 11072, 672-680.	1.0	21
43	Anatomyâ€guided joint tissue segmentation and topological correction for 6â€month infant brain MRI with risk of autism. Human Brain Mapping, 2018, 39, 2609-2623.	1.9	20
44	Discovering cortical sulcal folding patterns in neonates using largeâ€scale dataset. Human Brain Mapping, 2018, 39, 3625-3635.	1.9	18
45	Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. NeuroImage, 2019, 198, 114-124.	2.1	18
46	Hierarchical Rough-to-Fine Model for Infant Age Prediction Based on Cortical Features. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 214-225.	3.9	18
47	Learningâ€based subjectâ€specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies. Human Brain Mapping, 2016, 37, 4129-4147.	1.9	17
48	Infant Brain Development Prediction With Latent Partial Multi-View Representation Learning. IEEE Transactions on Medical Imaging, 2019, 38, 909-918.	5.4	17
49	S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 1964-1976.	5.4	17
50	Existence of Functional Connectome Fingerprint during Infancy and Its Stability over Months. Journal of Neuroscience, 2022, 42, 377-389.	1.7	17
51	Learning-Based Topological Correction for Infant Cortical Surfaces. Lecture Notes in Computer Science, 2016, 9900, 219-227.	1.0	16
52	4D Infant Cortical Surface Atlas Construction Using Spherical Patch-Based Sparse Representation. Lecture Notes in Computer Science, 2017, 10433, 57-65.	1.0	15
53	Can we predict subjectâ€specific dynamic cortical thickness maps during infancy from birth?. Human Brain Mapping, 2017, 38, 2865-2874.	1.9	14
54	DIKA-Nets: Domain-invariant knowledge-guided attention networks for brain skull stripping of early developing macaques. Neurolmage, 2021, 227, 117649.	2.1	14

#	Article	IF	CITATIONS
55	Constructing 4D Infant Cortical Surface Atlases Based on Dynamic Developmental Trajectories of the Cortex. Lecture Notes in Computer Science, 2014, 17, 89-96.	1.0	14
56	Maternal Obesity during Pregnancy is Associated with Lower Cortical Thickness in the Neonate Brain. American Journal of Neuroradiology, 2021, 42, 2238-2244.	1.2	11
57	Recurrent Tissue-Aware Network for Deformable Registration of Infant Brain MR Images. IEEE Transactions on Medical Imaging, 2022, 41, 1219-1229.	5.4	11
58	Multi-Regression based supervised sample selection for predicting baby connectome evolution trajectory from neonatal timepoint. Medical Image Analysis, 2021, 68, 101853.	7.0	7
59	Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset. Lecture Notes in Computer Science, 2016, 9900, 10-18.	1.0	7
60	Automatic parcellation of cortical surfaces using random forests., 2015, 2015, 810-813.		6
61	ABCnet: Adversarial bias correction network for infant brain MR images. Medical Image Analysis, 2021, 72, 102133.	7.0	6
62	Harmonized neonatal brain MR image segmentation model for cross-site datasets. Biomedical Signal Processing and Control, 2021, 69, 102810.	3.5	6
63	Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation. Lecture Notes in Computer Science, 2020, 12436, 663-673.	1.0	6
64	Exploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information. Lecture Notes in Computer Science, 2017, 10433, 12-20.	1.0	5
65	Spherical U-Net For Infant Cortical Surface Parcellation. , 2019, 2019, 1882-1886.		5
66	A Deep Network for Joint Registration and Parcellation of Cortical Surfaces. Lecture Notes in Computer Science, 2021, , 171-181.	1.0	5
67	Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores. IEEE Transactions on Medical Imaging, 2022, 41, 1665-1676.	5.4	5
68	Deep learning in cortical surface-based neuroimage analysis: a systematic review. Intelligent Medicine, 2023, 3, 46-58.	1.6	5
69	Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. Neurolmage, 2022, 247, 118799.	2.1	4
70	Cortical Foldingprints for Infant Identification. , 2019, 2019, 396-399.		3
71	Genetic Influences on Longitudinal Trajectories of Cortical Thickness and Surface Area during the First 2 Years of Life. Cerebral Cortex, 2021, , .	1.6	3
72	Infant Cognitive Scores Prediction with Multi-stream Attention-Based Temporal Path Signature Features. Lecture Notes in Computer Science, 2020, 12267, 134-144.	1.0	3

#	Article	IF	CITATIONS
73	Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces. Lecture Notes in Computer Science, 2019, , 277-288.	1.0	3
74	Reference-Relation Guided Autoencoder with Deep CCA Restriction for Awake-to-Sleep Brain Functional Connectome Prediction. Lecture Notes in Computer Science, 2021, , 231-240.	1.0	2
75	A Few-Shot Learning Graph Multi-trajectory Evolution Network forÂForecasting Multimodal Baby Connectivity Development from aÂBaseline Timepoint. Lecture Notes in Computer Science, 2021, , 11-24.	1.0	2
76	Multi-scale Self-supervised Learning for Multi-site Pediatric Brain MR Image Segmentation with Motion/Gibbs Artifacts. Lecture Notes in Computer Science, 2021, 12966, 171-179.	1.0	2
77	A Computational Framework for Dissociating Development-Related from Individually Variable Flexibility in Regional Modularity Assignment in Early Infancy. Lecture Notes in Computer Science, 2020, 12267, 13-21.	1.0	2
78	LONGITUDINAL MULTI-SCALE MAPPING OF INFANT CORTICAL FOLDING USING SPHERICAL WAVELETS. Proceedings, 2017, 2017, 93-96.	0.0	2
79	Influence of Gonadal Steroids on Cortical Surface Area in Infancy. Cerebral Cortex, 2021, , .	1.6	2
80	Spherical Transformer for Quality Assessment of Pediatric Cortical Surfaces. , 2022, 2022, .		2
81	Learning Infant Brain Developmental Connectivity for Cognitive Score Prediction. Lecture Notes in Computer Science, 2021, , 228-237.	1.0	1
82	Construction of Spatiotemporal Infant Cortical Surface Functional Templates. Lecture Notes in Computer Science, 2020, 12267, 238-248.	1.0	1
83	Surface-based analysis of the developing cerebral cortex. Advances in Magnetic Resonance Technology and Applications, 2021, , 287-307.	0.0	O