Hongxing Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2195860/publications.pdf

Version: 2024-02-01

49 papers

1,387 citations

³⁶¹⁴¹³
20
h-index

36 g-index

49 all docs 49 docs citations

49 times ranked 1808 citing authors

#	Article	IF	Citations
1	Ultrafast Optical Properties of Cavityâ€Enhanced Superfluorescence. Advanced Optical Materials, 2022, 10, .	7.3	8
2	Femtosecond Dynamics of a Polariton Bosonic Cascade at Room Temperature. Nano Letters, 2022, 22, 2023-2029.	9.1	7
3	Relaxation Oscillations of an Exciton–Polariton Condensate Driven by Parametric Scattering. Nano Letters, 2022, 22, 3026-3032.	9.1	7
4	Nanolayered VO ₂ -Based Switchable Terahertz Metasurfaces as Near-Perfect Absorbers and Antireflection Coatings. ACS Applied Nano Materials, 2022, 5, 5569-5577.	5.0	17
5	Solventâ€Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	3.7	1
6	Solventâ€Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Selfâ€Assembly (Adv. Mater. Interfaces 19/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0
7	Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications. Nanoscale, 2021, 13, 7831-7837.	5.6	44
8	Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. Light: Science and Applications, 2021, 10, 60.	16.6	25
9	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	11.2	28
10	Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process. Materials, 2021, 14, 5708.	2.9	8
11	Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. Applied Physics Letters, 2020, 116, .	3.3	6
12	Linearly polarized lasing based on coupled perovskite microspheres. Nanoscale, 2020, 12, 5805-5811.	5.6	22
13	Broad-band lead halide perovskite quantum dot single-mode lasers. Journal of Materials Chemistry C, 2020, 8, 13642-13647.	5.5	24
14	Near-field imaging of the multi-resonant mode induced broadband tunable metamaterial absorber. RSC Advances, 2020, 10, 5146-5151.	3.6	11
15	Allâ€Photonic Miniature Perovskite Encoder with a Terahertz Bandwidth. Laser and Photonics Reviews, 2020, 14, 1900398.	8.7	10
16	Polariton–Polariton Interactions Revealed in a One-dimensional Whispering Gallery Microcavity. Nano Letters, 2020, 20, 1552-1560.	9.1	12
17	Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nature Communications, 2020, 11, 329.	12.8	51
18	Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Nanoscale, 2020, 12, 5374-5379.	5.6	92

#	Article	lF	CITATIONS
19	High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Optics Express, 2020, 28, 26836.	3.4	41
20	Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window. RSC Advances, 2019, 9, 22282-22287.	3.6	28
21	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie, 2019, 131, 16280-16286.	2.0	6
22	An Allâ€Inorganic Perovskiteâ€Phase Rubidium Lead Bromide Nanolaser. Angewandte Chemie - International Edition, 2019, 58, 16134-16140.	13.8	12
23	High-Temperature Upconverted Single-Mode Lasing in 3D Fully Inorganic Perovskite Microcubic Cavity. ACS Photonics, 2019, 6, 793-801.	6.6	35
24	Facile synthesis and optical properties of colloidal quantum dots/ZnO composite optical resonators. RSC Advances, 2018, 8, 1778-1783.	3.6	3
25	Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. Journal of Materials Chemistry C, 2018, 6, 11740-11748.	5. 5	37
26	Realization of an all-optically controlled dynamic superlattice for exciton–polaritons. Nanoscale, 2018, 10, 14082-14089.	5.6	15
27	Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces. Optics Express, 2018, 26, 11728.	3.4	188
28	Ultrahigh Quality Upconverted Singleâ€Mode Lasing in Cesium Lead Bromide Spherical Microcavity. Advanced Optical Materials, 2018, 6, 1800391.	7.3	47
29	Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11, 10681-10688.	14.6	216
30	Ultrafast Saturable Absorption of Core/Shell Colloidal Quantum Dots. Particle and Particle Systems Characterization, 2017, 34, 1600193.	2.3	10
31	CdTe/CdS Quantum Dots: Effective Saturable Absorber for Visible Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-7.	2.9	19
32	Geometry Dependent Evolution of the Resonant Mode in ZnO Elongated Hexagonal Microcavity. Scientific Reports, 2016, 6, 19273.	3.3	19
33	Surfaceâ€Energyâ€Driven Growth of ZnO Hexagonal Microtube Optical Resonators. Advanced Optical Materials, 2016, 4, 126-134.	7.3	19
34	Colloidal quantum-dot-based silica gel glass: two-photon absorption, emission, and quenching mechanism. Nanoscale, 2016, 8, 16440-16448.	5.6	19
35	Two-photon absorption and emission in CsPb(Br/I) ₃ cesium lead halide perovskite quantum dots. CrystEngComm, 2016, 18, 7945-7949.	2.6	40
36	Freeâ€Standing, Singleâ€Crystalline Parallelogram Sb Shallowâ€Doped ZnO Waveâ€Guided Optical Resonators. Advanced Optical Materials, 2014, 2, 1090-1097.	7.3	8

#	Article	IF	CITATIONS
37	Optical modulation in microsized optical resonators with irregular hexagonal cross-section. Journal of Materials Chemistry C, 2014, 2, 8976-8982.	5.5	11
38	Optical modulation of ZnO microwire optical resonators with a parallelogram cross-section. Nanoscale, 2013, 5, 4123.	5.6	11
39	A novel synthesis and excellent photodegradation of flower-like ZnO hierarchical microspheres. CrystEngComm, 2013, 15, 10272.	2.6	14
40	Single-crystalline tower-like ZnO microrod UV lasers. Journal of Materials Chemistry C, 2013, 1, 202-206.	5.5	55
41	Robust exciton-polariton effect in a ZnO whispering gallery microcavity at high temperature. Applied Physics Letters, 2012, 100, .	3.3	26
42	Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry–Pérot resonators. Journal of Materials Chemistry, 2012, 22, 3069.	6.7	11
43	Single-crystalline polyhedral In2O3 vertical Fabry–Pérot resonators. Applied Physics Letters, 2011, 98, 011913.	3.3	13
44	Graphene and Carbon Nanotube Polymer Composites for Laser Protection. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 736-746.	3.7	37
45	Synthesis of indium oxide hexagonal microcavity and identification of its whispering gallery modes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1672-1674.	0.8	6
46	Indium oxide octahedra optical microcavities. Applied Physics Letters, 2010, 97, 223114.	3.3	10
47	Single-crystalline hexagonal ZnO microtube optical resonators. Journal of Materials Chemistry, 2010, 20, 5510.	6.7	26
48	Whispering gallery modes in indium oxide hexagonal microcavities. Applied Physics Letters, 2009, 94, 173115.	3.3	29
49	Stable Multiâ€Wavelength Lasing in Single Perovskite Quantum Dot Superlattice. Advanced Optical Materials, 0, , 2200494.	7.3	3